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ABSTRACT 
Phytoremediation of metals and other environmental pollutants is gaining importance as a cost-effective method for pollution mitigation 
and envisages sustainable development. This paper envisages prospects of phytoremediation for mitigation of heavy metal pollutants from 
the environment, with particular reference to arsenic (As) and chromium (Cr). Genetically engineered tailor-made plants have much 
potential for selective uptake, accumulation and sequestration of heavy metals. Recent developments in this area and state-of-the-art 
technology foresee genetically engineered plants with an ability to prevent accumulation of As in aerial parts of experimental plant 
systems, which could be extrapolated to edible plants such as rice, wheat and others. Similarly, hyperaccumulation in plant biomass is 
another important approach for removal of these toxic metals from the land and water ecosystems and mitigation of As and Cr pollution. 
The mechanisms of As hyperaccumulation by the hyperaccumulator plants has opened up scope for genetic engineering other prospective 
plant species to enhance hyperaccumulation of toxic metals in their aerial biomass. This review enumerates the mechanisms of 
hyperaccumulation in the plant systems, the potential genes that could be engineered to develop tailor made genetically engineered plants 
aimed for phytoremediation of As and Cr and other metals in general. 
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INTRODUCTION 
 
Phytoremediation, using plant species to clean up soil and 
water, is gaining importance in recent times (Salt et al. 
1995a; Schnoor 2002; Suresh and Ravishankar 2004; Pilon-
Smits 2005; Erakhrumen 2007). It is a cost effective, pro-
mising and environmental friendly technology (Smith et al. 
1995; EPA 1996, 1999; Ghosh and Singh 2005; UNEP un-
dated). Plants have unique ability to concentrate essential 
and nonessential elements from the soil through the roots 
(EPA 2000a; Verbruggen et al. 2009). Phytoremediation in-
cludes several subaspects such as, phytoextraction, phyto-
stabilization, rhizofiltration and phytovolatilization (Raskin 
and Ensley 2002; Pulford and Watson 2003; LeDuc et al. 
2004). The phytoextraction process uses metal accumulating 
plants that absorb metals from soils, and further transport 
and concentrate them in the aboveground plant biomass that 
could be harvested by conventional methods (Brooks 1998; 
Li et al. 2003; Shah and Nongkynrih 2007). The plant spe-
cies potential for phytoremediation are desired to possess 
following preferred characteristics: (1) ability to accumulate 
metals preferably in the aboveground parts, (2) tolerance to 

the accumulated metal concentration, (3) fast growth and 
high biomass, (4) widespread highly branched root system, 
(5) easy harvestability (EPA 2000a; Barceló and Poschen-
rieder 2003). Genetically transformed plant species with 
ability to detoxify/accumulate mercury (Hg), cadmium (Cd), 
lead (Pb), selenium (Se) and arsenic (As) have been deve-
loped (Rugh et al. 1996, 2000; Grichko et al. 2000; Lin et 
al. 2000; Pilon-Smits et al. 2000; Harada et al. 2001; 
Berken et al. 2002; Dhankher et al. 2002; Pilon-Smits and 
Pilon 2002; Barceló and Poschenrieder 2003; Gisbert et al. 
2003; Kawashima et al. 2004; Eapen and D’Souza 2005; 
Dhankher et al. 2006). A better understanding of the mecha-
nisms of rhizosphere interaction (Singer 2006), uptake, 
transport and sequestration of metals in hyperaccumulator 
plants will be helpful in designing transgenic plants with 
improved remediation traits (Krämer and Chardormens 
2001; Verbruggen et al. 2009). More genes and regulatory 
mechanisms related to metal metabolism are being dis-
covered (Becher et al. 2004; Viswanathan et al. 2004; Valli-
yodan and Nguyen 2006; Sreenivasulu et al. 2007), which 
have opened up new possibilities for development of effici-
ent transgenic plants for phytoremediation application (Pol-

® 



Transgenic Plant Journal 3 (Special Issue 1), 57-86 ©2009 Global Science Books 

 

lard and Baker 1996; Baker and Whiting 2002; Inui and 
Ohkawa 2005; Shah and Nongkynrih 2007). Plants, pros-
pective for genetic engineering for phytoremediation appli-
cation should be a high biomass plant, preferably with short 
duration of lifecycle with inherent capability for phytoex-
traction, and amenable to genetic transformation protocols 
(Macek et al. 2000; Pilon-Smits 2005). 

An ideal plant for environmental cleanup can be envisi-
oned as one with high biomass production, combined with 
superior capacity for tolerance, accumulation, and/or deg-
radation of the pollutant depending on the type of pollutant 
(Clemens et al. 2002; Eapen et al. 2007). With the use of 
genetic engineering, it is feasible to manipulate a plant’s 
capacity to tolerate, accumulate, and/or metabolize pol-
lutants, and thus to create the ideal plant for environmental 
cleanup (Karenlampi et al. 2000; Aken 2008). The plant for 
metal phytoremediation should possess important charac-
teristics such as; metal tolerance and accumulation deter-
mined by metal uptake, root-shoot translocation, intra-
cellular sequestration, chemical modification, and general 
stress resistance. With the knowledge of the mechanisms in-
volved in the tolerance and accumulation processes (Pilon-
Smits 2005; Singer 2006) and the genes that control these 
mechanisms (Rigola et al. 2006; Eapen et al. 2007; Ver-
bruggen et al. 2009), it could be possible to manipulate the 
traits and exploit these plants for phytoremediation to its 
maximum. Several reviews have enumerated the mecha-
nisms of plant metal tolerance and accumulation, and high-
lighted possible strategies for genetic engineering of plants 
for metal phytoremediation (Pilon-Smits and Pilon 2002; 
Barceló and Poschenrieder 2003; Inui and Ohkawa 2005; 
Reeves 2006; Tripathi et al. 2007; Eapen et al. 2007; Shah 
and Nongkynrih 2007; Verbruggen et al. 2009). 

Enhanced metal tolerance and accumulation have been 
achieved by overproducing metal chelating molecules [cit-
rate, phytochelatins (PC), metallothioneins (MT), phyto-
siderophores, ferritin] or by the overexpression of metal 
transporter proteins (Lee et al. 1978; Cobbett 2000; Cobbett 
and Goldsbrough 2002; Flocco et al. 2004; Roosens et al. 
2004; Freeman et al. 2005; Ingle et al. 2005; Kim et al. 
2005; Raab et al. 2005; Callahan et al. 2006; Callahan et al. 
2007; Durrett et al. 2007; Haydon and Cobbett 2007; Sun et 
al. 2007; van de Mortel et al. 2008; Verbruggen et al. 2009). 
The typical enhancement in metal accumulation in plant, as 
the result of genetic engineering approaches is 2- to 3-fold, 
which could potentially enhance phytoremediation effici-
ency by the same factor (Pilon-Smits and Pilon 2002; Shah 
and Nongkynrih 2007). Some hyperaccumulator plants for 
which regeneration protocols are already developed in-
cludes; Indian mustard (Brassica juncea), sunflower (Heli-
anthus annuus), tomato (Lycopersicon esculentum) and yel-
low poplar (Liriodendron tulipifera). Many of the candidate 
plants for phytoremediation are crop plants and use of these 
plants renders them unsuitable for humans and animals con-
sumption. Therefore, high biomass noncrop plants species, 
which are repulsive to herbivores and natural hyperaccumu-
lators are preferred for phytoremediation use (Glebert et al. 
2003; Reeves 2006; Eapen et al. 2007; Shah and Nongkyn-
rih 2007). The applicability of the transgenics for environ-
mental cleanup, results from laboratory and greenhouse stu-
dies look promising for several of these transgenics (Song 
et al. 2003; Dhankher et al. 2006; Eapen et al. 2007; Ra-
thinasabapathi et al. 2007; Verbruggen et al. 2009). This 
paper enumerates the progress in manipulation of plant 
metal metabolism for phytoremediation of metals, with em-
phasis on hyperaccumulation of As and Cr in the plant bio-
mass. 
 
SCOPE FOR GENETIC ENGINEERING OF PLANTS 
 
In transgenic plant a recombinant DNA is incorporated into 
the host genome to ensure formation of the gene product 
(usually a protein) that mediates metal hyperaccumulation 
or detoxification (Grichko et al. 2000; Sharma and Dietz 
2006; Eapen et al. 2007; Aken 2008). The gene product can 

be targeted to certain cellular compartments (e.g. chloro-
plast, vacuole, mitochondrion, or apoplast) (Mari et al. 
2006) and the expression pattern of the gene may be prog-
rammed to be only in certain tissue types (e.g. roots, vas-
cular tissue, shoot) (Dhankher et al. 2006; Sreenivasulu et 
al. 2007), or under certain environmental conditions (stress-
induced, light-induced) (Summers 1996; Kasuga et al. 
1999; Sreenivasulu et al. 2007). Besides overexpressing a 
gene, it is also possible to repress the expression of an en-
dogenous gene, by inserting a copy of that gene in reverse 
orientation (antisense technology) (Domínguez-Solís et al. 
2001; Xiang et al. 2001; Dhankher et al. 2002; Li et al. 
2004; Meagher et al. 2005). The selected species can be 
bred further to enhance efficiency of the desired property, 
either through classic breeding or via genetic engineering, 
and the latter is useful for introducing remote genes (Inui 
and Ohkawa 2005) aimed at enhancing phytoremediation 
potential for metals. 

Other approaches for enhancing metal phytoremediation 
efficiency include; identification of suitable plant species 
for metal remediation, delineation of agronomic practices 
for the selected species to maximize biomass production 
and metal uptake (e.g. planting density and fertilization to 
enhance plant productivity (Chaney et al. 2000), and using 
soil amendments such as organic acids or synthetic chela-
tors to enhance metal uptake (Salt and Kramer 2000; Blay-
lock and Huang 2000; Meers et al. 2004; Haydon and Cob-
bett 2007). 
 
BIOCHEMICAL MECHANISMS OF METAL 
ACCUMULATION AND TOLERANCE BY PLANTS 
 
Uptake 
 
Roots compete with soil particle cation/anion exchange 
sites for ions and the bioavailable metal ions are taken up 
by plant root system. The uptake of metals requires trans-
port across the root cell membrane into the symplast. This 
process involves specific membrane transporter proteins. 
Membrane transport of cations has been reported in several 
reviews (Fox and Guerinot 1998; Williams et al. 2000; 
Mäser et al. 2001; Axelsen and Palmgren 2001; Meharg and 
Jardine 2003; Krämer et al. 2007). The genome of the model 
species Arabidopsis thaliana encodes for over 150 dif-
ferent cation transporters in at least nine different families. 
Membranes serve to separate compartments in which metal 
concentrations can be regulated with the aid of transporters 
(Nelson 1999; Roosens et al. 2004; van de Mortel et al. 
2006). Often, more than one transport system exists for one 
metal. In A. thaliana and Thalaspi arvense several transpor-
ters of the NRAMP (natural resistance associated macro-
phage) family, ZIP (zinc-regulated transporter) family, YSL 
(yellow stripe1 like) family and members of IRT (ZIP 
family of metal transporters) family are capable of transpor-
ting Fe, Zn, Cd, into cells (Curie et al. 2000, 2001; Mäser et 
al. 2001; van de Mortel et al. 2006; Krämer et al. 2007; van 
de Mortel et al. 2008). The presence of several transporters 
permits uptake systems with different affinities and capa-
cities (Verbruggen et al. 2009). In addition, transporters are 
present in internal membranes to allow and regulate the 
storage of metals in organelles such as vacuoles (Tong et al. 
2004; Bleeker et al. 2006). Transporters may be specific for 
a certain cell type and can transport more than one metal 
ion. For instance, the FER1 (ferritin binding), IRT and ZIP 
family metal transporters mediates uptake of Fe, Zn, Cd 
(van de Mortel et al. 2006; Plaza et al. 2007; van de Mortel 
et al. 2008) and Ph1;1 and Ph1;4 phosphate transporters 
(Shin et al. 2004). 
 
Translocation 
 
For root-shoot translocation of metals, metal transporters 
export metal ions out of the root symplast into the xylem 
apoplast (Marschner 1995; Mills et al. 2003, 2005; Verret et 
al. 2005; Xing et al. 2008). Different chelators may be in-
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volved in translocation of metal cations through the xylem 
(Pilon-Smits and Pilon 2002; Kim et al. 2005), such as 
organic chelators (e.g. malate, citrate, histidine) (Salt et al. 
1995b; Krämer et al. 1996; Von Wiren et al. 1999; Sharma 
and Dietz 2006; Krämer et al. 2007) or nicotianamine (NA) 
(Stephan et al. 1996; Von Wiren et al. 1999). Nicotianamine 
function as a chelator for translocation of metals in the 
phloem (Von Wiren et al. 1999; Mari et al. 2006). Similarly, 
uptake of metal ions from the xylem apoplast into the shoot 
symplast is mediated by metal transporters present in the 
shoot cell membrane. 
 
Sequestration 
 
Inside the cells, the metal ions are translocated to final 
destination for storage and chelation involving membrane 
metal transporters and metal-binding proteins (Kim et al. 
2006; Hassinen et al. 2007; Verbruggen et al. 2009). Dif-
ferent classes of metal binding proteins have been identified, 
such as; ATP-binding cassette (ABC) (Song et al. 2003; van 
de Mortel et al. 2008), cation diffusion facilitators (CDF) 
(Peiter et al. 2007), zinc transporter of A. thaliana (HMA, 
ZAT renamed as AtMTP1) (Becher et al. 2004; Willems et 
al. 2007) and Ca2+/cation antiporter (CaCA/CAX) super-
family MHX (Elbaz et al. 2006). 

Metallothioneins are the class of metal chelating mole-
cules that play in sequestration and its production is upreg-
ulated under conditions of high metal availability (Murphy 
and Taiz 1995; Guo et al. 2008). Metallothioneins are small 
(~3.5-14 kDa) cysteine-rich metal-binding proteins that 
occur in all organisms (Cobbett and Goldsbrough 2000). Al-
though the exact role of MTs is still not clear (Hassinen et 
al. 2007), they mostly play a role in homeostasis of essen-
tial metals (Filatov et al. 2006) and are likely involved in 
the tolerance to nonessential metals (Zhou and Goldsbrough 
1995; Guo et al. 2008). Metal chaperones are a different 
class of proteins that bring metals to specific targets in the 
cell, i.e. the ATX (yeast copper homeostasis gene) protein, 
which is upregulated under Cu deficiency (Himelblau et al. 
1998; Roosens et al. 2004). Toxic levels of essential or 
nonessential metals are stored inside cellular location where 
the metal can do the least harm to vital cellular processes. 
This may involve storage in special cellular compartments 
such as the vacuole by means of specialized transporters 
such as ZAT1, a CDF-type transporter (Van der Zaal et al. 
1999; Verbruggen et al. 2009). Sequestration may also be in 
the apoplast, or in specialized cell types, such as epidermal 
cells and trichomes (Heath et al. 1997; Coleman et al. 1997; 
Küpper et al. 1999; Salt and Krämer 2000; Hale et al. 2001; 
Choi et al. 2001; Yang et al. 2005a; Peiter et al. 2007; 
Verbruggen et al. 2009). Certain metals are complexed by 
PC for storage in the vacuole (Zenk 1996; Pickering et al. 
2006). 

Phytochelatins are small cysteine-rich metal-binding 
peptides (5 to 23 amino acids) that occur in all plants tested 
so far (Rauser 1995; Zenk 1996; Cobbett 2000; Clemens 
2006), as well as in some fungi and animals (Vatamaniuk et 
al. 2001). Phytochelatins are induced only under metal stress 
and mainly function in tolerance to toxic metals (Golds-
brough 2000; Cobbett and Goldsbrough 2000). They are 
synthesized enzymatically from glutathione (GSH). Com-
plexes of metals bound by GSH or PC are shuttled to the 
vacuole by an ABC-type transporter protein in the tonoplast 
(Lu et al. 1997; Ghosh et al. 1999; Kim et al. 2006). The 
same type of transporter is involved in shuttling GSH-con-
jugated anthocyanins to the vacuole (Marrs 1996). Antho-
cyanins can also bind metals (Takeda et al. 1985; Everest 
and Hall 1921; Kondo et al. 1992), and suggested playing a 
role in metal sequestration (Hale et al. 2001); similarly, or-
ganic acid molecules are involved in metal complexation in 
the vacuole (Krämer et al. 2000; Haydon and Cobbett 2007). 
Excess iron, in contrast to other metals, is stored in chloro-
plasts, bound to the protein ferritin (Theil 1987; Goto 1999). 
 
 

Chemical modification 
 
Metal-modifying enzymes may also be involved in assim-
ilation of metals into organic molecules (e.g. selenate is 
metabolized to dimethylselenide (Pilon-Smits et al. 1999; 
De Souza et al. 2000; Van Huysen et al. 2004), or in chan-
ging the oxidation state of metals (e.g. toxic Cr(VI) is 
reduced to nontoxic Cr(III) (Lytle et al. 1998); As(V) to As 
(III) (Dhankher et al. 2002; Sundaram et al. 2008) and in 
dicots Fe, Cd, Hg and possibly also Cu is reduced by a re-
ductase at the root cell membrane before uptake (Robinson 
et al. 1999; Pilon-Smits et al. 2000; Che et al. 2003; Talke 
et al. 2006). 
 
Stress resistance 
 
Metal stress activates antioxidative systems composed of 
free radical scavenging molecules such as; proline, betaines, 
polyamines, ascorbate, GSH and PC and several enzymes 
are involved in their biosynthesis and reduction (Noctor and 
Foyer 1998; Nanjo et al. 1999; Sharma and Dietz 2006; 
Mishra et al. 2008). Other molecules involved in preventing 
oxidative stress are the superoxide dismutase enzymes 
(Matysik et al. 2002), which themselves require Cu/Zn, Mn, 
Fe as cofactors (Bowler et al. 1994; Bertrand and Poirier 
2005). The overproduction of any of these components may 
lead to higher metal stress tolerance (Berducci et al. 2004; 
Chakrabarty et al. 2009). Alternatively, overexpression of a 
regulatory gene that regulates the activation of many metal-
induced genes may be the most efficient way to enhance 
metal tolerance (Viswanathan et al. 2004; Sreenivasulu et al. 
2007). The iron dependant cis-regulatory element was iden-
tified in maize that mediates repression of ferritin genes 
under low iron conditions (Petit et al. 2001). Further, trans-
cription factors that mediate salt, drought, and freezing tol-
erance have also been identified (Su et al. 1998; Kasuga et 
al. 1999; Valliyodan and Nguyen 2006). 
 
Hyperaccumulation 
 
Metal hyperaccumulators accumulate ~100-fold higher 
levels of metal than nonaccumulator species (Brooks 1998) 
for example; 1% dry weight (DW) Mn and Zn, 0.1% DW 
Cu and Ni and 0.01% DW Cd (Baker et al. 2000) and 2.3% 
As (Ma et al. 2001; Wang et al. 2002; Tu et al. 2004). 
Hyperaccumulators are usually slow growing, low biomass 
species. They hyperaccumulate metals from low external 
metal concentrations and most of the metal are translocated 
to the shoot (Salt and Krämer 2000). At the root membrane 
level, metal uptake is unusually high in hyperaccumulators. 
This may be due to constitutive high expression of a metal 
transporter in the plasma membrane, as found for the Zn, 
Cd and As hyperaccumulators (Pence et al. 2000; Ma et al. 
2001; Lombi et al. 2001, 2002a, 2002b; Meharg and Jardine 
2003; Roosens et al. 2004; Krämer et al. 2007). The uptake 
of metals in hyperaccumulators could be further enhanced 
by metal chelators like histidine (Krämer et al. 1996; Calla-
han et al. 2006), NA (Callahan et al. 2007), organic acids 
(citrate, malate) (Ueno et al. 2005; Montargès-Pelletier et al. 
2008), GSH (Freeman et al. 2004; van de Mortel 2008), PC 
(Raab et al. 2005; Clemens 2006; Pickering et al. 2006; 
Schulz et al. 2008), MT (Guo et al. 2008), and/or by rhizo-
sphere microbes (Khan 2005; Shah and Nongkynrih 2007) 
capable of mobilizing nonlabile soil metals (Khan et al. 
2000; Whiting et al. 2001; McGrath et al. 2001). Hyperac-
cumulators shows reduced metal accumulation in root vacu-
oles, enhanced root-shoot translocation, enhanced uptake 
into leaf cells, and higher metal tolerance (Brooks 1998; 
Lasat et al. 2000; Ma et al. 2001; Macnair 2003; Verbrug-
gen et al. 2009). The high metal tolerance may in part be 
due to highly efficient intracellular compartmentalization. 
Moreover, efficient chelation is one of the key factors for 
metal tolerance and accumulation in hyperaccumulators 
(Persans et al. 2001; Sharma and Dietz 2006; Haydon and 
Cobbett 2007; Verbruggen et al. 2009). 
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SOURCE, OXIDATION STATE, TOXICITY AND 
PROBLEMS: ARSENIC AND CHROMIUM 
 
Arsenic: source, occurrence and toxicity problem 
 
The terrestrial abundance of As is around 1.5–3 mg kg�1 
mass (Sheppard 1992; Nriagu 1994a; EPA 2000b). Arsenic 
arises in the environment from natural and anthropogenic 
sources (Maggs and Moorcroft 2000; Welch et al. 2000; 
WHO 2001a; Brammer and Ravenscroft 2009). In nature, 
As is distributed ubiquitously throughout earth crusts, soil, 
sediments, water, air and living organisms in over 200 dif-
ferent mineral forms, of which approximately 60% are arse-
nates, 20% sulfides and sulfosalts and the remaining 20% 
includes arsenides, arsenites, oxides, silicates and elemental 
As (Bowell 1994; Mondal and Suzuki 2002; Oremland and 
Stolz 2005; Mukherjee et al. 2008; Kim et al. 2009). Un-
contaminated soils usually contain 1–40 mg As kg�1, with 
lowest concentrations in sandy soils and those derived from 
granites, whereas larger concentrations are found in alluvial 
and organic soils (Kabata-Pendias and Pendias 1992; WHO 
2001b). 

Arsenic is a toxic element and a proven carcinogen 
(National Research Council 2000; WHO 2001a; Abernathy 
et al. 2003; Petrusevski et al. 2007). Arsenic contamination 
is associated with; mining and ore processing (Nriagu 
1994b; WHO 2001a), usage of As-based pesticides, herbi-
cides, insecticides for crop protection (Meharg and Hartley-
Whitaker 2002) and As contaminated ground water as 
outcome of depletion of ground water table (Nickson et al. 
1998). It has become a serious environmental hazard 
throughout the world (Mondal and Suzuki 2002; Petrusev-
ski et al. 2007) and a crisis in South-East Asia (West Bengal, 
Bangladesh and Vietnam) (Christen 2001; Wikipedia). Mil-
lions of people have been exposed to high levels of As 
through drinking water (Petrusevski et al. 2007; Brammer 
and Ravenscroft 2009). Consequently; remediation of As 
pollution from the land and water ecosystems has received 
increasing attention. 

Because of the proven and widespread negative health 
effects on humans, in 1993, the World Health Organization 
(WHO) lowered the health-based provisional guideline for a 
“safe” limit for As concentration in drinking water from 50 
to 10 �g/L (i.e. from 0.05 to 0.01 mg/l). WHO retained this 
provisional guideline level in the latest edition of its stan-
dards (WHO 2004). The guideline value for As is provisio-
nal, because there was clear evidence of hazard but uncer-
tainty about the actual risk from long-term exposure to very 
low As concentrations. Recently, strong adverse effect on 
health was discovered to be associated with long-term ex-
posure to even very low As concentrations (Abernathy et al. 
2003; Petrusevski et al. 2007). Drinking water is now rec-
ognized as the major source of human intake of As in its 
most toxic (inorganic) forms. The WHO provisional guide-
line of 10 �g/L has been adopted as a national standard by 
most countries, including Japan, Jordan, Laos, Mongolia, 
Namibia, Syria and the USA, and by the European Union 
(EU). In practical aspects implementation of the new WHO 
guideline value of 10 �g/L is currently not feasible for a 
number of countries strongly affected by the As problem, 
including Bangladesh and India, which retain the 50 �g/L 
limit. Other countries such as; Bahrain, Bolivia, China, 
Egypt, Indonesia, Oman, Philippines, Saudi Arabia, Sri 
Lanka, Vietnam and Zimbabwe have not updated their drin-
king water standards and retain the older WHO guideline of 
50 �g/L (UN 2001). Remediation of As pollution from land 
and water ecosystems is an important area of research and 
development. 

Since, As is ubiquitously encountered in the environ-
ment it enters the biotic and in organisms (Cullen and Rei-
mer 1989). It is present both as arsenite (AsIII) and arsenate 
(AsV) in the environment, the latter being more prevalent in 
soils and water (Oremland and Stolz 2003; Caussy 2003). 
Plants face arsenical compounds mainly in the form of the 
anions As(III) and As(V); the latter competes with phos-

phate and is readily taken up (Warren et al. 1964; Ullrich-
EberiusSanz 1989). Arsenate is an analogue of phosphate 
and interferes with essential cellular processes such as oxi-
dative phosphorylation and ATP synthesis, whereas the toxi-
city of As(III) is due to its propensity to bind to sulfhydryl 
groups, with consequent detrimental effects on general 
protein functioning (http://en.wikipedia.org/wiki/Arsenic; 
Rosen 1999; Bernstam and Nriagu 2000; EPA 2000b; 
Hazardous Waste Consultant 2002; Tripathi et al. 2007; 
Sundaram et al. 2008). Nearly every organism from Esche-
richia coli to humans has mechanisms for As detoxification, 
most of which involve transport systems that catalyze extru-
sion from the cytosol (Rosen 2002; Mukhopadhyay and 
Rosen 2002; Bhattacharjee and Rosen 2007). In majority of 
bacterial species As(III) is detoxified through removal from 
the cytosol using the ars operon consisting of three genes 
arsRBC (Rosen 1999). The cytosolic As(III) is a product of 
As(V) reductase [by the transcript of ArsC that converts 
As(V) to As(III)] following uptake via aquaglyceroporin 
(Mukhopadhyay et al. 2003). Subsequently, the As(III) is 
extruded using ArsB gene, which is an As(OH)3/H+ antipor-
ter that extrudes As(III) (Meng et al. 2004) and ArsR is an 
As(III)-responsive transcriptional repressor. Some bacteria 
have these three genes (arsRBC) in the operon and extrude 
As(III) by ArsB alone, while others have five-gene 
arsRDABC in the operon and use the ArsAB pump (Rosen 
1999) for As extrusion. In the bacteria with ars operons 
(arsRDABC) with two additional genes arsD and arsA, the 
arsA transcript is co-expressed with arsB, and the ArsAB 
complex catalyzes ATP-driven As(III) efflux. This carrier-
mediated efflux of As(III) via an carrier protein mediated 
through As(III)-translocating ATPase confer more resistance 
to As(V) and As(III) than those organisms without ArsA 
(Dey and Rosen 1995a). ArsD is an As metallochaperone 
that transfers As(III) to ArsA, increasing its ability to ex-
trude As(III) (Lin et al. 2006). In eukaryotes As(III) resis-
tance is conferred by members of the MRP (multidrug resis-
tance-associated protein) group of the ABC superfamily of 
transport ATPases (Cole et al. 1994; Rosen 2002; Mukho-
padhyay and Rosen 2002). In Saccharomyces cerevisiae an 
MRP homolog Ycf1p (ABC superfamily of drug resistance-
pumps) also confer Cd(II) resistance by pumping Cd(GS)2 
into the vacuole (Li et al. 1996). It has been demonstrated 
that Ycf1p transports As(GS)3 into the vacuole and confers 
As(III) resistance in yeast (Ghosh et al. 1999; Rosen 2002). 
 
Chromium: source, occurrence and problem 
 
Chromium occurs in nature in bound forms at about 100–
300 mg kg�1 of soil (Zayed and Terry 2003) and widely dis-
tributed in rocks, fresh water and seawater. In natural soil, 
Cr concentration ranges from 10–50 mg kg�1 (Shanker et al. 
2005). Chromium has several oxidation states ranging from 
Cr(�II) to Cr(+VI) (Kotas and Stasicka 2000). The trivalent 
and hexavalent states are the most stable, although Cr with 
valences of I, II, IV and V exist in a number of compounds 
(James and Bartlett 1983; Zayed and Terry 2003). The 
recommended guidelines for Cr are; freshwater life 0.001 
mg L�1 for Cr(VI) and 0.008 mg L�1 for Cr(III), marine life 
0.001 mg L�1 for Cr(VI) and 0.005 mg L�1 for Cr(III), irri-
gation water 0.008 mg L�1 for Cr(VI) and 0.005 mg L�1 for 
Cr(III) and drinking water 0.05 mg L�1 for Cr(VI) (Krishna-
murthy and Wilkens 1994; Pawlisz et al. 1997). 

Chromium is an essential trace element in the metabo-
lism of human beings and animals (Shrivastava et al. 2002). 
Although, low concentration of Cr enhance growth of plants, 
excess Cr is highly toxic to animals and plants and may 
induce cancer and teratism (Shanker et al. 2005). Cr(VI) is 
more toxic to plants than Cr(III) (Panda and Patra 1997; 
Han et al. 2004; Vernay et al. 2008) and both are toxic at 
higher concentrations, i.e. > 50 mg kg�1 of soil (Zayed and 
Terry 2003; Panda and Choudhury 2005). Under hydro-
ponic conditions, Cr toxicity occurred when supplied at 1–2 
mg kg�1 (Soane and Saunder 1959; Terry 1981). In soil ex-
periments, 75–100 mg kg�1 soil exerted plant toxicity (Verry 
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and Vermette 1991). The critical leaf Cr concentration in 
most plants is between 1 and 10 mg kg�1 dry weight 
(Kabata-Pendias and Adriano 1995; Zayed and Terry 2003). 
In barley and rape plants Cr accumulation in leaves were up 
to 3000–5000 mg kg�1 when exposed to 100 mg L�1 Cr(VI) 
and up to 300–400 mg kg�1 when exposed to 100 mg L�1 
Cr(III) under hydroponic treatment (Hauschild 1993). These 
levels of accumulation caused root growth reduction, leaf 
chlorosis, induction of leaf chitinase activity, and, later, 
reduced shoot growth and lowered water content in leaves. 
All plants exposed to 100 mg L�1 Cr(VI) died within 10 
days, while plants exposed to Cr(III) did not die but only 
showed stress symptoms (Kleiman and Cogliatti 1998). 
Although Cr(III) at lower concentrations is not a significant 
hazard in itself, the potential for oxidation to Cr(VI) can 
make its risk tantamount to that of the hexavalent form 
(McGrath 1982; Panda and Choudhury 2005). 

The Cr(VI) is a strong oxidizer to cause oxidative dam-
age to the cells (Vazquez et al. 1987; Shanker et al. 2005; 
Scoccianti et al. 2006). This cause malfunctions in the up-
take of mineral nutrients viz. selective mechanisms for con-
trol of inorganic up of root cells is destroyed, permitting 
large amounts of Cr(VI) to enter the root passively (Haus-
child 1993). This probably explain the reason for higher 
Cr(VI) uptake by plant compared to Cr(III) and occurrance 
of Cr in the above ground parts (Zayed and Terry 2003; 
Shanker et al. 2005). Cr(III) stress induces lesser produc-
tion of ROS (reactive oxygen species) and consequently 
lesser toxicity due to less oxidizing potential. However, 
under appropriate conditions, H2O2 can act as an oxidizing 
agent and may oxidize Cr(III) to Cr(VI) through endoge-
nous oxidation. On the other hand, Cr(III) can be endoge-
nously reduced to Cr(II) by biological reductants such as 
cysteine and NADPH. The newly formed Cr(II) could react 
with H2O2 producing hydroxyl radicals and causes tissue 
damage. Thus, one of the challenges to Cr toxicity is to 
understand the interconversion of the Cr species within the 
plant system after its uptake, on a time course with empha-
sis at different stages of plant development. 

Studies (Yu and Gu 2007) on Cr removal by hybrid wil-
lows (Salix matsudana Koidz 3 alba L.) from hydroponic 
solution indicated that high doses of Cr(III) concentrations 
(2–30 mg L�1) did not cause deleterious effects on plant 
physiological functions during 8 days exposure. The para-
meters susceptible to Cr(III) supply were in following 
order; CAT (catalses) > POD (peroxidases) > transpiration 
rate > SOD (superoxide dismutase)> chlorophyll a > solu-
ble protein > chlorophyll b. Hauschild (1993) reported some 
other sequence of Cr toxicity symptoms; induction of stress 
compounds (e.g., putrescine, chitinase) > root growth > 
visible damage symptoms > leaf growth > leaf water con-
tent. The total amount of Cr accumulated in plant biomass 
of hybrid willows (Yu and Gu 2007) indicated that Cr con-
centrations had no direct influence on Cr accumulation in 
plant materials. At low-exposure concentrations, roots were 
the major sink for Cr accumulation, whereas stems were the 
accumulated reservoir at higher Cr supply, and Cr translo-
cation from stems to leaves is limited. A strong correlation 
was found between transpiration rate and accumulated Cr, 
which indicated that Cr accumulated in plant materials is 
highly dependent on the transpiration of plants. However, 
further studies are required to establish the biochemical 
pathway or mechanism Cr(III) transport into plant tissues. 
High sensitivity of CAT to Cr(III) has been proposed as bio-
chemical indicator for Cr-contaminated environmental 
media (Panda and Choudhury 2005; Yu and Gu 2007). 

Labra et al. (2004) has shown that potassium dichro-
mate induce genetic and DNA methylation alteration in B. 
napus L. plants. The amplified fragment length polymor-
phism (AFLP) and selective amplification of polymorphic 
loci (SAMPL) tests revealed dose-related increases in se-
quence alterations under exposure to 10–200 mg L�1 potas-
sium dichromate suggesting random DNA mutation. DNA 
methylation changes in the genome of B. napus in response 
to potassium dichromate treatment were evaluated using 

immunolabelling and methylation-sensitive amplified poly-
morphism (MSAP). The results revealed cytosine-hyper-
methylation, extensive methylation changes in CCGG-se-
quences and genome-wide hypermethylation. These results 
showed that Cr effect was dose-dependent and DNA poly-
morphism could be used as a tool for evaluating the pol-
lutant concentration in plants. The impact of Cr(VI) and tri-
valent Cr(III) on photosynthetic gas exchange, photosystem 
II (PSII) activity, Cr translocation and accumulation, proline 
content and alkaloids production (scopolamine and hyos-
cyamine) in Datura innoxia (Vernay et al. 2008) indicated 
that Cr uptake was influenced by its oxidation state and its 
concentration in growth medium. The plant roots were the 
main organ of Cr accumulation. Cr(VI) reduced plant bio-
mass and net photosynthesis more than Cr(III). Plants 
stressed with Cr(VI), show down regulation of PSII activity 
with an impairment of photochemical activity. The effects 
of 0.052 mg L�1, 0.52 mg L�1 and 5.2 mg L�1 Cr(VI) on 
minerals (Mn, Fe, Cu and Zn) uptake, lipid peroxidation, 
antioxidant enzymes activities, photosynthetic function, and 
chlorophyll fluorescence characteristics in hydroponically 
grown Amaranthus viridis L. (Liu et al. 2008) indicated that 
chromium was accumulated primarily in roots. Cr content 
in the roots and shoots increased with the increasing Cr(VI) 
concentrations, and induced decrease of Mn, Fe, Cu and Zn. 
Cr(VI) induced oxidation stress and lipid peroxidation and 
MDA (malonyldialdehyde) concentration was increased. 
 
MECHANISMS OF ARSENIC AND CHROMIUM 
DETOXIFICATION 
 
Arsenic detoxification in bacteria and yeast 
 
Arsenic uptake and detoxification in biological systems has 
been illustrated by Rosen (2002) (Fig. 1). In prokaryotes E. 
coli and unicellular eukaryots yeast As(V) is taken up by 
phosphate transporters (Willsky and Malamy 1980; Yom-
pakdee et al. 1996), and As(III) is taken up by aquaglycero-
porins (GlpF in E. coli, Fps1p and Aqp7 in yeast) (Sanders 
et al. 1997; Borgnia et al. 1999; Wysocki et al. 2001; Tri-
pathi et al. 2007). In bacteria, As detoxification is under the 
control of the ars operon containing three genes, arsR, B 
and C: ArsR encodes a trans-acting repressor that senses 
As(III) and controls the expression of ArsB and ArsC; ArsC 
encodes a reductase that reduces As(V) to As(III) using 
GSH as reductant; and ArsB extrudes AsIII from the cells 
by functioning as an As(OH)3–H+ antiporter. In both E. coli 
and yeast, As(V) is reduced to As(III) by the bacterial ArsC 
(Rosen 1999) or yeast Acr2p enzymes (Bobrowicz et al. 
1997; Mukhopadhyay and Rosen 1998). In both organisms, 
GSH and glutaredoxin serve as the source of reducing 
potential (Shi et al. 1999; Mukhopadhyay et al. 2000). In E. 
coli, As(III) is extruded from the cells by ArsB alone or by 
the ArsAB ATPase (Dey and Rosen 1995b; Rosen 2002). In 
some bacteria, the ars operon contains five genes, arsR, D, 
A, B, and C, that encode two additional proteins: ArsA is an 
ATPase that binds to ArsB and converts the As(III) carrier 
protein into a primary ATP-driven AsIII extrusion pump; 
ArsD exhibits weak As(III) responsive transcriptional rep-
ressor activity (Rosen 1999, 2002). 

In yeasts, As tolerance is provided by three contiguous 
genes in the cluster ACR1, ACR2 and ACR3 (Bobrowicz et 
al. 1997): ACR1 encodes a putative transcription factor; 
ACR2 encodes an As(V) reductase; and ACR3 encodes a 
plasma membrane As(III)-efflux transporter. The Acr3p 
(Wysocki et al. 1997, 2001) is a plasma membrane As(III) 
efflux protein. This mechanism ensures As(V) reduction 
and its removal from the cytosol to the external medium 
(Fig. 1). A second mechanism operates in yeast for the 
removal of cytosolic As to vacuole through an ABC-type 
transporter yeast cadmium factor (Ycf1p), which is located 
at the vacuolar membrane and sequesters GSH conjugates 
of As(III) (AsIII–GS3) into the vacuole (Ghosh et al. 1999). 
The Ycf1p is a member of the MRP (multidrug resistance-
associated protein) family of the ABC superfamily of drug-

61



Transgenic Plant Journal 3 (Special Issue 1), 57-86 ©2009 Global Science Books 

 

resistance pumps that transports As(GS)3 into the vacuole. 
While Ycf1p is located in the vacuolar membrane and cata-
lyzes sequestration of As(GS)3 in the vacuole, Acr3p is a 
plasma membrane carrier protein that catalyzes extrusion of 
As(III) from cytosol (Zaman et al. 1995). 

Transformation and volatilization of As by the bacterial 
system has been reported (Bentley and Chasteen 2002). 
Further, the ArsM gene located in the arsRM operon of the 
Rhodopseudomonas palustris bacterium has been cloned 
(Quin et al. 2006). The arsM gene and its protein product 
ArsM is an As(III) S-adenosylmethyltransferase enzyme 
which is also termed as Cyt19 or As3MT (Quin et al. 2006). 
The As(III)-S-adenosylmethyltransferase activity was ori-

ginally identified in rats and humans (Thomas et al. 2004; 
Waters et al. 2004). Expression of arsM is regulated by the 
ArsR-type repressor, and the As(III) S-adenosylmethyltrans-
ferase enzyme mediates the sequential methylation of 
As(III): As(III) is methylated to dimethylarsinic acid 
(DMA), probably through transient intermediate mono-
methylarsonic acid (MMA), and then to trimethylarsine 
oxide (TMAO). The TMAO is finally reduced to the vola-
tile trimethylarsine (TMA) (Quin et al. 2006; Tripathi et al. 
2007) (Fig. 1A). 
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Fig. 1 Arsenical detoxification in bacteria and yeast (based on Rosen et al. 2002). In E. coli, PhoS, PstC, PstB are phosphate and As(V) transporters, 
and GlpF (aquaglyceroporins) is As(III) transporter. As(V) is reduced to As(III) by ArsC transcript using glutathione, and effluxed by ArsA and ArsB 
transcripts. In S. cerevisiae, Pho87p is phosphate and As(V) transporter, Fps1p (aquaglyceroporins) is As(III) transporter. As(V) is reduced to As(III) by 
Acr2p (arsenate reductase) using glutathione. Acr3p is a plasma membrane arsenite efflux protein, and Ycf1p (a member of the MRP family of the ABC 
superfamily of drug-resistance pumps) transports As(GS)3 into the vacuole. 
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Fig. 1A Arsenical volatilization in bacteria and detoxification in yeast (based on Quin et al. 2006; Tripathi et al. 2007). In prokaryotic and 
eukaryotic cell, Pi/AsV are phosphate transporters for As(V) take up, and aquaglyceroporins is As(III) transporter. GSH is glutathione GSSG is 
glutathione oxidized. ATP is adenosine triphosphate and ADP is the oxidized form. In prokaryotic cell RM and RABC depicts gene ArsM and genes R, A, 
B, C of ars operon, respectively. arsR, B and C are genes; arsR encodes trans-acting repressor controlling expression of B and C, arsC encodes arsenate 
reductase, and arsB encodes for functioning of membrane bound As(III) antiporter. As(III) is methylated to dimethylarsinic acid (DMA) presumably 
through the transient intermediate monomethylarsonic acid (MMA) then converted to trimethylarsine oxide (TMAO), and finally reduced to volatile 
trimethylarsine (TMA). In eukaryotic cell (yeast), ACR1, ACR2 and ACR3 are genes; encoding for a transcription factor, arsenate reductase and plasma 
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Arsenic detoxification in eukaryotes 
 
1. Mammals 
 
In mammals, arsente is presumably taken up by phosphate 
transporters (exact types not known), and As(III) is taken up 
by Aqp9 aquaglyceroporins (Rosen 1999, 2002). The en-
zymes involved in As(V) reduction are not identified. The 
As(III) is coupled with GSH and effluxed out of the cell 
through the Mrp isoforms (MRP family of the ABC super-
family of drug-resistance pumps) (Fig. 2), for example the 
Mrp2 extrudes As(GS)3 into bile (Kala et al. 2000). In 

many mammals, including humans, an alternate metabolic 
fate of As(III) is methylation in the liver, followed by uri-
nary excretion of the methylated species (Styblo et al. 2002). 
Haugen et al. (2004) postulated a global model of the As 
response combining phenotypic data with gene-expression 
profiles (Fig. 2A). It was found that synergestic pathways 
lead to the yeast As detoxification mechanisms. Such as; 
serine, threonine, aspartate and arginine, as well as shiki-
mate metabolisms represent sensitive pathways and Yapl is 
an example of transcription factor protein that is both sensi-
tive and confers induced gene expression (Fig. 2A). Dele-
tion analysis of the transcription factors confirms its role in 
As-mediated control of the stress response. The model 
depicts pathways or genes those are differentially expressed 
but not sensitive by phenotypic profiling. The expression 
changes lead to the cells response to indirect oxidative 
stress and mechanisms for detoxification. The results of 
Haugen et al. (2004) concluded that As detoxification in 
yeast focuses around: nucleotide and RNA synthesis, me-
thionine metabolism and sulfur assimilation, protein deg-
radation, and transcriptional regulation as stress-response 
networks. Protein synthesis in response to As diverts energy 
toward the gene expression channeling sulfur into GSH, 
which then leads to indirect oxidative stress by depleting 
GSH pools and alters protein turnover. These processes re-
quire regulation by transcription factors. Their experiments, 
confirmed that the transcription factor proteins Yap1, Arr1 
and Rpn4 strongly mediate the cell's adaptation to As-
induced stress but the Cad1 transcription factor protein has 
negligible impact. The phenotypic profiling data relating to 
the metabolic network implicated two significant metabolic 
networks, shikimate and serine, threonine and glutamate 
biosynthesis and multiple branchpoints between redundant 
pathways. The transport protein, Arr3 extrudes As(III) out 
of the cells is both sensitive and highly differentially ex-
pressed. It was shown that genes that confer sensitivity to 
As are upstream of the genes that are transcriptionally con-
trolled by As and share redundant functions. 

 
2. Non-hyperaccumulators 
 
Exposure of plants to inorganic As results in the generation 
of ROS (Hartley-Whitaker et al. 2001a) and leads to the 

Mrp

?

As(V)

As(III)
ATP

AQP7/9

+ 3 GSH

ADP

?

As(GS)2

H2PO4
-1

H2AsO4
-1

Sb(OH)2

As(OH)2

Fig. 2 Arsenical detoxification in mammals (eukaryotes) (based on 
Rosen et al. 2002). Transporters of As(V) are not known. Aqp7 and Aqp9 
are aquaglyceroporins transporters for As(III). Proteins for reduction of 
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synthesis of enzymatic antioxidants such as superoxide dis-
mutase (SOD), catalase and GSH-S-transferase, and nonen-
zymatic antioxidants such as GSH and ascorbate (Alscher 
1989; Mylona et al. 1998; Dat et al. 2000; Hartley-Whit-
aker et al. 2001a). Glutathione act as an antioxidant, and 
precursor of PC ([�-glutamate-cysteine]n-glycine) synthe-
sized upon exposure to inorganic As, and the inorganic As 
is associated with PC inside the cell. Synthesis of PC will 
therefore result in GSH depletion, and reduce the amount of 
antioxidant available for quenching ROS (De Vos et al. 
1992; Sneller et al. 1999; Hartley-Whitaker et al. 2001b). 
Synthesis of PC is induced by the oxy-anions As(V), sele-
nate and a range of cations such as Ag+, Cd2+, Cu2+, Hg2+ 
and Pb2+ (Grill et al. 1985). Phytochelatins are synthesised 
from reduced GSH by the transpeptidation of �-glutamyl-
cysteinyl dipeptides, through the action of the constitutive 
enzyme PC synthase (Schmöger et al. 2000; Vatamaniuk et 
al. 2000). Detailed kinetic studies of intact A. thaliana, 
Salene vulgaris and Holocus lanatus (Sneller et al. 1999; 
Schmöger et al. 2000; Hartley-Whitaker et al. 2001b), cell 
cultures of Rauvolfia serpentina and S. vulgaris (Schmöger 
et al. 2000), root cultures of Rubia tinctorum (Maitani et al. 
1996) and enzyme preparations of S. vulgaris (Schmöger et 
al. 2000), have established that PC are induced on exposure 
to inorganic arsenic. Size exclusion chromatography indi-
cates that As is associated with PC in cell extracts of S. vul-
garis (Schmöger et al. 2000), and X-ray absorption spec-
troscopy (XAS) of B. juncea has determined that As is pre-
sent in the As(III) valance state co-ordinated with three sul-
phur groups (Pickering et al. 2000a). Further, sensitivity of 
R. serpentina cell cultures to As(III) (Schmöger et al. 2000) 
was increased in the presence of buthionine sulfoximine 
(BSO), which is an inhibitor of �-glutamylcysteine synthase. 
In H. lanatus involvement of PC production in As(V) resis-
tance have been demonstrated (Hartley-Whitaker et al. 
2001b). However, the localization of As-PC complexes 
within plant tissue is still unknown. 

Mechanisms of As uptake, translocation and detoxifica-
tion in plants are reviewed (Tripathi et al. 2007) (Fig. 3). 

Plants take up As(V) and As(III) through phosphate transpor-
ters and aquaglyceroporins, respectively. Small amounts of 
organic As (monomethylarsonic acid, MMA; and dimethyl-
arsinic acid, DMA) are also taken up through unknown 
transporters. Long distance transport of As from root-to-
shoot takes place in the form As(V) and As(III). Plants 
assimilate sulfate (SO4

2_
) to form cysteine (Cys) for the 

synthesis of GSH in two ATP-dependent steps. In the first 
step, �-glutamylcysteine (�-EC) is synthesized by �-gluta-
mylcysteine synthetase (�-ECS) using cysteine and �-glu-
tamic acid (�-Glu) as substrates which is the rate-limiting 
step; and in the second step, GSH is synthesized by gluta-
thione synthetase (GS) using glycine (Gly) as a substrate. In 
response to As, plants induce synthesis of PC, the polymers 
of GSH, through the enzyme phytochelatin synthase (PCS). 
Phytochelatins can be transported from root-to-shoot and 
vice versa. Before detoxification, As(V) is reduced to 
As(III) by arsenate reductase (AR) using GSH as a reduc-
tant mostly in the root cells. Phytochelatins and GSH coor-
dinate with As(III) to form a variety of complexes. These 
complexes can be sequestered in the vacuole by ABC-type 
transporters, although direct evidence is lacking. In addition, 
large amounts of unbound As(III) are found in vacuoles, but 
whether these are transported as free As(III) is not known. 

 
3. Hyperaccumulator plants 
 
The As hyperaccumulator plants such as; Pteris vittata, 
Ptyrogramma calomelanos and others (Ma et al. 2001; 
Hartley-Whitaker et al. 2001b; Francesconi et al. 2002; 
Zhao et al. 2002a; Meharg 2003; Srivastava et al. 2006; 
Sarangi and Chkrabarti 2008) are a group of newly dis-
covered unique plants. The P. vittata has high As bioac-
cumulation factor (�100) and compartmentalize As more in 
their aerial biomass (Tu and Ma 2002; Tu et al. 2002; 
Zhang et al. 2002; Tu and Ma 2005). Arsenate is taken up 
by P. vittata via phosphate uptake systems (Wang et al. 
2002; Poynton et al. 2004), transported via xylem (Kertulis 
et al. 2005; Pickering et al. 2006), reduced to As(III) in the 
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Fig. 3 Comparison of As detoxification methods in non-hyperaccumulator and hyperaccumulator plants (based on Tripathi et al. 2007). Pi/AsV 
and aquaglyceroporins are As(V) and As(III) transporters in root cells. DMA (dimehylarsonic acids) and MMA (monomethylarsonic acids) are other 
organic forms of As. AR is arsenate reductase that reduces As(V) to As(III) using glutathione (GSH) as a reductant, GSSG is oxidized glutathione. Plants 
assimilate sulphate (SO4

2-) to form cysteine (Cys) and synthesize GSH in two steps. In the first step �-glutamylcysteine (�-EC) is synthesized from 
cysteine and �-glutamic acid (Glu) by the enzyme �-glutamylcysteine synthetase (�-ECS). In the second step GSH is synthesized by glutathione synthetase 
(GS) using glycine (Gly). Phytochelatins (PC) are synthesized from GSH by the enzyme phytochelatin synthetase (PCS). As(III) is chelated by 
phytochelatins and sequestered in root vacuole. As(V) and As(III) and chelated-As(III) (As-thiol) are translocated to shoots or other plant parts for 
compartmentalization. 
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roots (Duan et al. 2005) and fronds (Ellis et al. 2006; 
Rathinasabapathi et al. 2006), and likely stored in the vacu-
oles (Pickering et al. 2006). When compared with an As-
sensitive fern P. ensiformis, P. vittata had significantly grea-
ter tolerance to oxidative stress, greater levels of reduced 
GSH, and antioxidant enzymes (Dhankher 2005; Srivastava 
et al. 2005; Singh et al. 2006). However, the specific roles 
of GSH in As tolerance of this fern are still unknown. Using 
a functional cloning method cDNAs from the frond of P. 
vittata involved in As tolerance was identified (Rathinasa-
bapathi et al. 2006) and further characterization reveled that 
the P. vittata cDNA encode a glutaredoxin (Grx)2 involved 
in As resistance having a role in regulating cellular As(III) 
levels (Sundaram et al. 2008). Sundaram et al. (2008) iso-
lated the glutaredoxin (PvGrx5) from the frond expression 
cDNA library of P. vittata based on the ability of the cDNA 
to increase As resistance in E. coli. Expression studies of 
PvGrx5 in As tolerance of E. coli mutant strains suggested 
that it had a role in cellular As resistance independent of the 
ars operon genes but dependent on GlpF aquaglyceroporin. 
The PvGrx5 had a role in regulating intracellular As(III) 
levels, by either directly or indirectly modulating the aqua-
glyceroporin. Grxs catalyze reversible deglutathionylation 
of protein-S-S-glutathione-mixed disulfides. Glutathionyla-
tion of proteins have been ascribed both metabolic and 
regulatory importance in keeping the redox homeostasis of 
cells (Starke et al. 2003). This study suggest that PvGRX5 
directly or indirectly interacts with a protein involved in As 
transport homologous to bacterial glpF, a transmembrane 
protein (Sanders et al. 1997; Yang et al. 2005b) involved in 
As(III) transport in other organisms. The results suggested 
that PvGRX5 in P. vittata frond possibly regulate a vacuolar 
glpF homolog (e.g. a tonoplast intrinsic protein) to alter 
As(III) transport into the vacuole. 
 
Chromium detoxification in biological systems 
 
There is no conclusive evidence of an essential role of Cr in 
plant metabolism although small amounts of Cr additions 
stimulating plant growth and yield have been observed by 
several researchers (Warington 1946; Pratt 1966; Terry 
1981; Bonet et al. 1991). High levels of Cr supply can in-
hibit seed germination and subsequent seedling growth. The 
deleterious effect of Cr is less pronounced on seed germi-
nation than on seedling growth. At 500 mg kg�1 Cr no bar-
ley seed germination occurred (Zayed and Terry 2003) but 
at 100 mg kg�1 in soil seedling development was impaired 

due to Cr inhibition of diatase, responsible for mobilizing 
the reserve starch necessary for initial growth. Chromium 
levels in plants growing in ‘normal’ soils are usually less 
than 1 mg kg�1 Cr (DW), rarely exceed 5 mg kg�1, and typ-
ically in the order of 0.02–0.2 mg kg�1 (DW) (Pratt 1966; 
Kabata-Pendias and Pendias 1992). In general, Cr concen-
trations in shoots of various plants are very low largely 
because Cr is a relatively immobile element in both soils 
and plants due to the prevalence of the more insoluble 
Cr(III) form. A hypothetical mechanism of Cr detoxification 
has been reported (Shanker et al. 2005) (Fig. 4). However, a 
comprehensive mechanism for detoxification, sequestration 
and tolerance of Cr within plant and animal system is lack-
ing. 

The capacity to synthesize higher amounts of cysteine 
(Cys) and reduced GSH in a Cr-tolerant strain of unicellular 
green alga Scenedesmus acutus was demonstrated to under-
lie tolerance to Cd and Cr(VI) (Gorbi et al. 2007). They 
reported that sulfur-starved cells had increased tolerance to 
Cd and Cr(VI) upon sulfate re-supply. Further, after starva-
tion, the two strains having higher capacity for sulfur up-
take rapidly restored GSH pool and increased free Cys to 
levels almost twice those of unstarved cells. These respon-
ses suggest that the higher tolerance to Cr(VI) after S-star-
vation is linked to the up-regulation of the sulfate uptake/ 
assimilatory process. The greater sulfur uptake and increase 
in free Cys and GSH content after starvation suggested that 
the Cr-tolerant strain may have a higher sensitivity to the 
decrease in the levels of intracellular end-products of sul-
fate assimilation processes, which lead to an up-regulation 
of these processes for synthesis of Cys and reduced GSH as 
the primary cause for the tolerance to chromium.The in-
creased activities of peroxidases and superoxide dismutases 
indicated that they could serve as important components of 
antioxidant defense mechanisms to minimize Cr induced 
oxidative injury in hydroponically grown A. viridis L (Liu 
et al. 2008). The net photosynthetic rate, transpiration rate, 
stomatal conductance and intercellular CO2 concentration 
were reduced only by high Cr(VI) treatments (0.52 mg L�1 
and 5.2 mg L�1). 

The As hyperaccumulator plant P. vittata (Chinese 
brake-fern), was also assessed for chromium phytotoxicity 
and distribution in the plant and cellular levels using chemi-
cal analyses and scanning electron microscopy (Su et al. 
2005). The results show a higher phytotoxicity of Cr(VI)-
contaminated soil than Cr(III)-contaminated soil. Phytotoxi-
city symptoms included significant decreases both in fresh 
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Fig. 4 Hypothetical model of Cr transport, toxicity and detoxification in plant roots (based on Shanker et al. 2005). Cr(III) and Cr(VI) entry is 
through carriers/ transorters used for uptake of essential elements such as Fe, S and P. The PM (plasma membrane) ATPase is involved in Cr(VI) uptake 
but not for Cr(III). Cr(VI) enters into the cytoplasm through SO4 (II)/ Fe(III) transporters and reduced to Cr(III). Both Cr(III) and Cr(VI) are sequestered 
in the root cytoplasm where Cr(VI) is presumably reduced to Cr(III). Cr(VI) induces gene expression and activation of defense mechanisms such as 
superoxide dismutase (SOD). 
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biomass weight and relative water content (RWC), and leaf 
chlorosis during the late stage of growing. At higher con-
centrations (500 mg kg�1 Cr[VI] and 1,000 mg kg�1 Cr[III]), 
plants showed reduction in the number of palisade and 
spongy parenchyma cells in leaves. Compared with other 
plant species reported for phytoremediation of Cr(VI)-con-
taminated soil, brake fern took up and accumulated signifi-
cant amounts of Cr (up to 1,145 mg kg�1 in shoots and 
5,717 mg kg�1 in roots) and did not die immediately from 
phytotoxicity. This study suggests that Chinese brake-fern is 
a potential candidate for phytoremediation of Cr(VI)-con-
taminated soils, even though plants showed severe phyto-
toxic symptoms at higher soil Cr concentrations. 
 
Hyperaccumulation – importance 
 
The plant hyperaccumulators accumulate metal in their 
aboveground tissue in its natural habitat (Reeves 1992; 
Baker et al. 2000; Boyd 2007). The hyperaccumulators are 
defined as having bioaccumulation factor >1 (ratio of shoot 
As and Cr concentration to soil concentration) (Brooks 
1998). Hyperaccumulators are important plant species for 
their prospective use in phytoremediation (Chaney et al. 
1997; Tong et al. 2004; Tu et al. 2004; Alkorta et al. 2004; 
Meagher and Haeton 2005; Pilon-Smits 2005), phytomining 
(Li et al. 2003) and foliar concentration thresholds for 
hyperaccumulation are reported (Verbruggen et al. 2009). 
Reeves (1992) defined Ni hyperaccumulator as a plant in 
which the metal concentration is at least 1000 mg kg�1 in 
the dry matter of any aboveground tissue when grown in its 
natural habitat. Some of the plants belonging to Brassica-
ceae such as Alyssum species, Thlaspi species and B. juncea, 
Violaceae such as Viola calaminaria, Leguminosae such as 
Astragalus racemosus are known to take up high concentra-
tions of heavy metals and radionuclides (Negri and Hinch-
man 2000; Reeves and Baker 2000). To date, there are ap-
proximately 450 known metal hyperaccumulators in the 
world (Reeves and Baker 2000; Verbruggen et al. 2009) and 
the number is increasing. The plant species have been iden-
tified as hyperaccumulators of trace metals (Zn, Ni, Mn, Cu, 
Co and Cd), metalloids (As) and nonmetals (Se), the majo-
rity of them being Ni hyperaccumulators (75%) (Baker and 
Brooks 1989; Reeves and Baker 2000; Pence et al. 2000; 
Ma et al. 2001; Lombi et al. 2001, 2002b; Meharg and Jar-
dine 2003; Roosens et al. 2004; Sors et al. 2005; Reeves 
2006; Krämer et al. 2007; Milner and Kochian 2008). 
Hyperaccumulators of As and Cr accumulate exceptional 
concentrations of trace elements in their aerial parts without 
visible toxicity symptoms (Ma et al. 2001; Zhang et al. 
2007). However, the remediation potential of many of these 
plants is limited because of their slow growth and low bio-
mass. The ideal plant species for phytoremediation should 
have high biomass with high metal accumulation in the 
shoot tissues (Chaney et al. 2000; Lasat 2002; McGrath et 
al. 2002). Enhancement of hyperaccumulation ability of 
known hyperaccumualtors, and induction of hyperaccumu-
lation ability in potential other plant species are important 
strategies for phytoremediation of metal pollutants like As 
and Cr. 
 
Arsenic hyperaccumulation 
 
A wide range of plant species have been found common on 
As-contaminated lands such as; Agrostis tenuis (Porter and 
Peterson 1975), Holcus lanatus (Macnair and Coumbes 
1987; Meharg and Hartley-Whitaker 2002), Deschampsia 
cespitosa and Agrostis capillaris (Meharg and Macnair 
1991b), S. vulgaris (Paliouris and Hutchinson 1991; Sneller 
et al. 1999), Bidens cynapiifolia (Bech et al. 1997), Calluna 
vulgaris (Sharples et al. 2000), Cytisus striatus (Bleeker et 
al. 2003), Indian mustard (Pickering et al. 2000a) and other 
plant species (Koch et al. 2000; Schmöger et al. 2000; Me-
harg 2003). The majority of these As-tolerant plants were 
identified from abandoned mine sites where the concentra-
tion of As in the soil was extremely high. On the other hand, 

plant species from uncontaminated soils also exhibited re-
sistance to As [Deschampsia cespitosa (Meharg and Mac-
nair 1991a) and S. vulgaris (Sneller et al. 1999)]. Under 
normal conditions, As concentration in terrestrial plants is 
less than 10 mg As kg�1 dry biomass (Matschullat 2000). 

The brake fern P. vittata (brake-fern) was reported (Ma 
et al. 2001) to hyperaccumulate As in the plant biomass 
from soil that accumulated up to 22,630 mg As kg�1 in the 
shoot (frond) dry weight with bioconcentration factor >100. 
An ecotype of the P. vittata is also reported as As hyper-
accumulator (Sarangi and Chakrabarti 2008). This fern pos-
sesses three key features that are typical of metal/metalloid 
hyperaccumulator plants: an efficient root uptake, an effici-
ent root to shoot translocation, and a much-enhanced toler-
ance to As inside plant cells. After the discovery of brake 
fern as As hyperaccumulator, several other fern species, like 
Pityrogramma calomelanos (Francesconi et al. 2002), P. 
cretica, P. longifolia, and P. umbrosa (Zhao et al. 2002a) 
have been recently added to the list of As hyperaccumu-
lators. The hyperaccumulation trait of these ferns may be 
potentially exploited in phytoremediation of As contami-
nated soils. Efficient uptake and translocation from root-to-
shoot contribute greatly to hyperaccumulation of As in P. 
vittata (Ma et al. 2001; Singh and Ma 2006). The constitu-
tive expression of genes that encode transporters, biosyn-
thesis of chelators are higher in hyperaccumulator plants 
(Zhang and Cai 2003; Singh and Ma 2006) and some of 
these plants have evolved precise mechanisms for seques-
tration/compartmentalization (Duan et al. 2005; Ellis et al. 
2006; Pickering et al. 2006; Rathinasabapathi et al. 2006) 
of the toxic metal ions in the biomass in comparison with 
non-accumulators. 
 
Significance of phytochelatin in arsenic 
hyperaccumulator plants 
 
A better understanding of the key mechanism responsible 
for As hyperaccumulation in P. vittata is essential to en-
hance its As remediation potential, as well as exploit the 
trait further through genetic engineering approaches. Al-
though the molecular mechanisms of As detoxification and 
tolerance is not fully determined, it has been shown that 
plants detoxify As by reducing As(V) to As(III) (Pickering 
et al. 2000a; Dhankher et al. 2002), which is subsequently 
detoxified forming complexes with thiol-reactive peptides 
such as �-glutamylcysteine (�-EC), GSH and PC (Pickering 
et al. 2000a; Hartley-Whitaker et al. 2001a; Dhankher et al. 
2002; Li et al. 2004). These As(III)-thiol complexes are 
then suggested to be sequestered into vacuoles by glutathi-
one-conjugating pumps (GCPs) (Dhankher et al. 2002; 
Wang et al. 2002), although direct evidence of this remains 
to be proven. 

Unlike other plants, in the case of P. vittata, it is repor-
ted (Zhao et al. 2003) that most of the As is translocated in 
the frond in the form of unbound As(III) as uncoordinated 
inorganic forms, and only 1 to 3% of the As is present in 
complex with PC as As(III)-(PC2)2. Lombi et al. (2002b) 
have produced evidence that As is stored primarily in the 
vacuole of P. vittata, and Wang et al. (2002) have shown 
that this As is primarily As(III), with some As(V). Thus, P. 
vittata differs from H. lanatus and sunflower (H. annus); as 
a large amount of As is translocated and stored in above-
ground tissues and less As is retained in the rhizome (Ma et 
al. 2001; Wang et al. 2002). These findings indicated in-
volvement of PC in the detoxification of As in plant sys-
tems, but it may not be the only mechanism As-relationship 
in these plant. Nevertheless, considering the total amount of 
As accumulated in the aerial plant biomass, in the As 
hyperaccumulating P. vittata, PC seems to have limited role 
in detoxification. Therefore, several R&D groups are trying 
to understand the mechanism of As hyperaccumulation in 
this plant. 

It is presumed that the PC synthase in hyperaccumu-
lating ferns may differ significantly from the PC synthases 
investigated in other plant species. Low quantities of PC 
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production in P. vittata on As exposure (Zhao et al. 2003) 
and P. cretica (Raab et al. 2004) suggests that PC do not 
have a major role in As storage in plant tissues, moreover 
most of the As is in toxic inorganic forms. As hypothesized 
by Zhao et al. (2003), PC may act to shuttle As through the 
cytoplasm in a relatively nontoxic form, and this may be 
their major role in As hyperaccumulating plants. The results 
of Raab et al. (2004) suggest that if As-PC transporters do 
exist that they may differ between plants depending on the 
dominant As-PC complex present. Although many plants 
adopt enhanced phytochelatin synthesis to detoxify toxic 
metals (Grill et al. 1985; Kneer and Zenk 1992; Schmöger 
et al. 2000), in brake fern the proportion of As complexed 
with PC relative to the total As is only about 1% (Zhao et al. 
2003; Raab et al. 2004), and the mechanism of hyperac-
cumulation is not fully known. Further, As(III) is the main 
storage form of As (85%) in the fronds of brake fern grown 
in the presence of As(V); (Wang et al. 2002; Zhang et al. 
2002; Lombi et al. 2002b), which is mainly stored in the 
vacuoles (Lombi et al. 2002b). It suggests that, reduction of 
As(V) to As(III) may be a key step in the detoxification 
pathways. Investigation of Duan et al. (2005) on As detoxi-
fication and accumulation mechanism in Chinese brake fern 
established with some certainty that As(V) is taken up by 
brake-fern and reduced to As(III) by a root-specific arsenate 
reductase and transported to the fronds in the reduced form. 
Enzymatic reduction does not take place in measurable 
amounts in the fronds. Based on these and reported results 
(Wang et al. 2002; Zhao et al. 2003; Raab et al. 2004), it is 
believed that As(V) reduction in roots is an important step 
in As hyperaccumulation by brake-fern. 

In another report (Raab et al. 2005) H. annus plants 
exposed to As(V) (4.9 mg L�1) did not contain any As–PC 
complexes; As present in the biomass was unbound as inor-
ganic As indicating that As–PC complexes did not play any 
role in the translocation of As in this plant. Investigation on 
another As hyperaccumulator (P. cretica) and an As-tolerant 
genotype of H. lanatus (Hartley-Whitaker et al. 2001b) 
showed that As–PC complexes are formed by these plants 
but, the concentration of these complexes was low com-
pared with the total As concentration in the plants (Raab et 
al. 2004). Further, in H. annus roots or leaves, at least 40% 
of the As was present in non-bound form (Raab et al. 2005) 
and do not support the hypothesis that As is transported via 
an As–PC complex. Similarly, in B. juncea using X-ray ab-
sorption spectroscopy Pickering et al. (2000a) found that 
during translocation of As to shoots through xylem sap, As 
is present in the form of its oxyanions As(V) and As(III), 
and not complexed by sulphur (S). Gong et al. (2003) as-
sumed that in Arabidopsis As is transported via an As–PC 
complex to the leaves, but they did not measure the As–PC 
complexes. Contrary to the above findings, an A. thaliana 
mutant that does not produce PC, was significantly more 
sensitive to As toxicity than the wild type (Ha et al. 1999). 
In B. juncea, Pickering et al. (2000a) reported that the me-
chanism of As tolerance is by complexation of As(III) with 
PC, as As(III) is co-ordinated with three sulfur groups, As is 
stored as an AsIII-tris-thiolate complex in the shoot. 

However, in P. vittata the EDXA (Energy dispersive X-
ray microanalyses) analyses did not reveal correlations 
between As and S (Lombi et al. 2002b), and therefore it is 
unclear whether complexation of As by PC and vacuolar 
storage of As-PC complexes are involved in As tolerance in 
P. vittata. The findings of Raab et al. (2005) indicated exis-
tence of an alternative mechanism of As detoxification in 
plants. They postulate that As(V) and As(III) are the main 
species of As that are translocated from roots to shoot tis-
sues via the xylem and not as As(III)–PC complexes. 
Although, in case of Cd it was established that in transgenic 
Arabidopsis long-distance Cd2+ transport is PC-dependent 
Gong et al. (2003). Therefore, further work is required to 
substantiate these differences in translocation of Cd and As. 
Previous studies in B. juncea and Arabidopsis (Pickering et 
al. 2000a; Dhankher et al. 2002), together with the study of 
Raab et al. (2005) in sunflower, showed that a major 

fraction of the As(V) taken up by plants was retained in 
roots and As(V) was further reduced to As(III) by endoge-
nous arsenate reductase. Through in vitro assay, Duan et al. 
(2005) has evidenced the presence of an arsenate reductase 
activity in the root extract of P. vittata that reduces As(V) to 
As(III). 

The observations of Pickering et al. (2006) through bulk 
X-ray absorption spectroscopy (XAS) in As treated P. vit-
tata confirms that prevalence of As is coordinated by oxy-
gen, rather than thiolates reported earlier by Webb et al. 
(2003). The XAS images of sporophyte that had depleted 
As(V) from its soil revealed high concentrations of As(III) 
in the leaf blade but neither As(V) nor thiolates (Pickering 
et al. 2006). Furthermore, although P. vittata synthesizes PC 
in response to As(V) the amount is sufficient only to coordi-
nate �3% of the total As in the leaves (Zhao et al. 2003). 
The surprising aspect of the fern’s hyperaccumulation of As 
is the apparent low involvement of thiolate coordination, 
despite the high affinity of As(III) for S-ligands and the 
typically large intracellular abundance of thiols (Foyer et al. 
2001). Together, these observations indicate that only a 
small fraction of As in leaves is coordinated to thiolates. 
This lack of thiol coordination may be a common theme in 
plants that have evolved to hyperaccumulate metals, inclu-
ding Ni (Krämer et al. 2000), Zn (Salt et al. 1999), Cd 
(Ebbs et al. 2002), Se (Pickering et al. 2000b) and As, as 
compared to the involvement of thiols in non-adapted plants 
for coordination of Cd (Salt et al. 1995b) and As (Pickering 
et al. 2000a). 
 
Chromium accumulation in plants and 
hyperaccumulators 
 
There are a few reports of Cr-hyperaccumulator plants. 
Sutera fodina Wild (Baker and Brooks 1989) accumulated 
2400 mg Cr kg�1 leave dry matter, and Convolvulus arven-
sis was considered as a potential Cr-hyperaccumulator plant. 
Torresdey et al. (2004) reported that Cr concentration in 
leaves of C. arvensis was up to 2800 mg kg�1 biomass when 
grown on an agar-based media containing 40 mg L�1 Cr(VI) 
for 15 days. Bennicelli et al. (2004) demonstrated that 
Azolla caroliniana has the capacity to accumulate 964 mg 
Cr(III) and 356 mg Cr(VI) from a nutrient culture solution 
kg�1 biomass. Zhang et al. (2007) have shown that a peren-
nial herb Leersia hexandra (Gramineae), widely distributed 
in swamps, paddyfields or riversides in southern China dis-
plays an extraordinary accumulation capacity for chromium. 
Under culture in nutrient solution amended with Cr(III), the 
Cr concentrations in leaves reached 5608 mg kg�1 with high 
bioaccumulation coefficients for Cr at an average of 562.3, 
112.9, and 239.6 at root, stem and leaf respectively. The L. 
hexandra plant has ability to accumulate 1359 mg Cr 
kg�1 biomass (dry weight) from low concentrations of Cr 
[Cr(III) treatment (5 mg L�1)]. 

A clear mechanism(s) of Cr hyperaccumulation in the 
plant biomass is not evident. The Cr hyperaccumulator 
plants have to be efficient in three aspects; solubilization of 
Cr in soil, absorption and translocation of soluble Cr and 
compartmentation and detoxification of absorbed Cr within 
plant. Solubilization of Cr in soil could be a limiting pro-
cess due to the complex chemistry of Cr. Several studies 
have reported that plant uptake of Cr increased with in-
creased soluble Cr in the media (Cary et al. 1977; McGrath 
1982). If the plant releases a Cr chelator or decreases the 
rhizosphere pH, both of which could increase Cr(III) solu-
bility in the soil to enhance for plant uptake. The plant spe-
cies Leptospermum scoparium (Myrtaceae) is an accumu-
lator of Cr and there is a highly significant correlation 
between plant and soil Cr concentration (Lyon et al. 1969). 
This species can accumulate up to 20,000 �g Cr g�1 (2%) in 
the foliage ash when grown on serpentine soils. Despite the 
low solubility of Cr, there are other species that contain 
large amounts Cr. Peterson and Girling (1981) reported 
48,000 and 30,000 �g Cr g�1 in the ash of Sutera fodina and 
Dicoma niccolofera, i.e. 4.8 and 3%, respectively (Lyon et 
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al. 1969; Peterson 1975). 
There is little information about Cr compartmentation in 

plants. The vacuole is considered to be the major storage 
site for most heavy metals (e.g., Cd, Zn, Mn, and Ni) (Wag-
ner et al. 1995). Soluble fraction of Cr was present in leaf 
tissue of Lyptospermum scoparium complexed with organic 
acids; presumably the Cr-organic acid complex reduces the 
cytoplasmic toxicity of Cr. Some plant species (especially 
those growing on serpentine soils), however, can accumu-
late relatively large amounts in their shoots. These are 
termed ‘Cr accumulators.’ A few Cr hyperaccumulator spe-
cies have been identified to date, which is in contrast with 
Ni, as numerous Ni hyperaccumulators have been identified 
(Baker and Brooks 1989). The species found to accumulate 
Cr are largely exotic. 
 
TRANSGENIC PLANTS FOR TOLERANCE AND 
ACCUMULATION OF HEAVY METALS 
 
The use of genetic engineering to modify plants for metal 
uptake, transport and sequestration open up new avenues 
for enhancing efficiency of phytoremediation. Physiological 
studies have paved the way for a basic understanding of 
metal hyperaccumulation mechanisms, including enhanced 
metal uptake, increased xylem loading and increased de-
toxification in the shoot (Lombi et al. 2001; Zhao et al. 
2006; Xing et al. 2008; Verbruggen et al. 2009). Metal 
chelator, metal transporter, MT and PC genes have been 
transferred to plants for improved metal uptake and seques-
tration (Yeargan et al. 1992; Eapen and D’Souza 2005). 
Analyzing trace metal tolerance and accumulation has been 
greatly enhanced by the use of high-throughput molecular 
technologies, in particular microarray, which has enhanced 
understanding the complexity of the hyperaccumulation 
phenomenon. These studies support the idea that genes that 
are thought to be involved in hyperaccumulation and hyper-
tolerance are not species-specific or novel, but rather dif-
ferently expressed and regulated, compared with non-hyper-
accumulator species. However as no complete genome se-
quences of hyperaccumulators are yet available, this assump-
tion cannot be fully verified. Comparative transcriptomics 
studies on hyperaccumulators and related nonaccumulating 
nontolerant species have identified a large array of genes 
that are constitutively (in the absence of excess of metallic 
ions) highly expressed (Weber et al. 2004; Becher et al. 
2004; Filatov et al. 2006; van de Mortel et al. 2006; Chak-
rabarty et al. 2009). The availability of full-genome sequen-
ces will allow the development of microarrays in other plant 
families. 
 
Strategies for genetic engineering metal tolerance 
/ accumulation 
 
A wide array of genes are involved in metal uptake, trans-
location, sequestration, chemical modification and tolerance 
(Eapen and D’Souza 2005; Verbruggen et al. 2009). The 
overexpression of any or combination of these genes is a 
possible strategy for genetic engineering. Such as; more ef-
ficient sequestration of metals in plant storage compart-
ments, overproduction of metal chelating molecules, or in-
creasing activity of enzymes involved in general (oxidative) 
stress resistance. The metal accumulation, tolerance, and 
plant productivity are not necessarily correlated (Wu 1990; 
Macnair et al. 2000). Therefore, it could be possible to 
breed or genetically engineer a plant with high metal toler-
ance and metal accumulation as well as high productivity. 
This has been demonstrated in the Arabidopsis systems for 
tolerance and accumulation of As (Dhankher et al. 2002, 
2006). Out of the several approaches the following two ap-
proaches could be more prospective due to practical feasibi-
lity. 

� The overexpression of metal transporter genes lead-
ing to enhanced metal uptake, translocation and/or se-
questration, depending on the tissues where the gene is 
expressed (root, shoot, vascular tissue, or all) and on the 

intracellular targeting (e.g. cell membrane, vacuolar 
membrane). 
� The overexpression of genes involved in synthesis of 
metal chelators leading to enhanced metal uptake, as 
well as enhanced metal translocation and/or sequestra-
tion, depending on the type of chelator and its location. 
Transfer of gene(s) conferring activation or induction of 

an appropriate mechanism in a candidate plants is a possible 
strategy for genetic engineering of plants to accumulate 
high concentrations of metals in harvestable parts with im-
proved traits for phytoremediation. Transfer or overexpres-
sion of genes could lead to enhanced metal uptake, translo-
cation, sequestration or intracellular targeting (Karenlampi 
et al. 2000; Clemens et al. 2002; Pilon-Smits and Pilon 
2002). Classic genetic studies have shown that only a few 
genes (one to three) are responsible for metal tolerance 
(Macnair et al. 2000). Transgenic plants for efficient phyto-
remediation would require introgression of genes from 
other metal hyperaccumulators or sources. The potential 
traits for genetic manipulation; aimed at enhancing uptake, 
translocation and sequestration of metal ions in plant bio-
mass are outlined below. 
 
Metal transporters 
 
1. Uptake of metal from soil to root 
 
Physiological and molecular-genetic studies have identified 
prospective metal transport proteins and genes those have 
definite role in enhancing metal hyperacumulation in hyper-
accumulators and model plant systems. The evidences are 
mostly obtained from the Zn hyperaccumulators and Arabi-
dopsis system. Enhanced Zn root uptake was driven by over-
expression of members of the ZIP family of metal transpor-
ters (zinc-regulated transporter, iron-regulated transporter 
protein) (Krämer et al. 2007). Constitutive overexpression 
of ZNT1 (Zn-transporting ZIP members, a homolog of 
AtZIP4) mediates high-affinity Zn transport as well as low-
affinity Cd uptake (Pence et al. 2000; van de Mortel et al. 
2006). Many Zn-transporting ZIP members, including ZNT1, 
are Zn-regulated and only detectably expressed under con-
ditions of Zn deficiency, whereas they are expressed more 
or less independently of the Zn supply in hyperaccumu-
lators (Pence et al. 2000). Physiological studies on T. caeru-
lescens have provided strong evidence that multiple uptake 
systems are involved in Cd and Zn uptake by roots (Lombi 
et al. 2002a; Zhao et al. 2002b; Cosio et al. 2004; Roosens 
et al. 2004). Those include a system with a strong pref-
erence for Zn over Cd, and another one with a preference 
for Cd over Zn. IRT1 (ZIP family of metal transporters) has 
been suggested to be responsible for Cd hyperaccumulation 
in the Ganges population (Lombi et al. 2001). Microarray 
analyses have highlighted the overexpression of more ZIP 
members in A. halleri and T. caerulescens (the homologs of 
AtZIP3, AtZIP6, AtZIP9, AtZIP10 and AtIRT3), although 
their roles in plants and in Zn hyperaccumulation remain to 
be established (Becher et al. 2004; Filatov et al. 2006; 
Hammond et al. 2006; Talke et al. 2006; Weber et al. 2006; 
Krämer et al. 2007; van de Mortel et al. 2008). Several Ni-
hyperaccumulating populations prefer Zn over Ni in experi-
mental conditions (Assunção et al. 2001, 2008), suggesting 
that Ni is taken up by a Zn transporter in these populations. 
However, in other populations, there may be Ni-preferent 
transporters (Peer et al. 2003). 

 
2. Translocation from the root to shoot 
 
Efficient translocation of metal ions to the shoot requires 
radial passage across cells and active loading into the xylem 
(Clemens 2006; Xing et al. 2008). Physiological studies of 
hyperaccumulators also demonstrated higher metal concen-
trations in the xylem sap due to enhanced xylem loading 
(Lasat et al. 1998; Xing et al. 2008). Several types of trans-
porters are involved in this process. Transcriptomic studies 
in hyperaccumulators have also revealed a higher expres-
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sion of genes encoding metal ligands or metal-ligand com-
plex transporters. These transporters play a role in trace 
metal translocation and prospective for engineering metal 
hyperaccumulation. 

P-type ATPase-HMA: P-type ATPase, also known as 
the heavy metal transporting ATPases (HMAs) are respon-
sible for the Cd and Zn loading to the xylem from the sur-
rounding vascular tissues (Mills et al. 2003). The P1B-type 
ATPases play an important role in transporting metal ions 
against their electrochemical gradient using the energy pro-
vided by ATP hydrolysis. HMAs cluster into two classes: 
those transporting monovalent cations (Cu/Ag group) and 
those transporting divalent cations (Zn/Co/Cd/Pb). HMA4 
gene encoding a plant P1B-type ATPase of the divalent 
transport group was cloned and characterized in A. thaliana 
localized at the plasma membrane (Mills et al. 2003). Role 
for HMA4 in Zn homeostasis, Cd detoxification, and trans-
location of these metals from the root to the shoot has been 
demonstrated in A. thaliana (Mills et al. 2003; Hussain et al. 
2004; Mills et al. 2005; Verreet et al. 2005). In both A. 
halleri and T. caerulescens, HMA4 is more expressed in 
both roots and shoots compared with Cd/Zn-sensitive close 
relatives (Hammond et al. 2006; Talke et al. 2006; van de 
Mortel et al. 2006; Courbot et al. 2007), strongly sup-
porting the idea that HMA4 plays an important role in toler-
ance and/or accumulation of both metals. Recently, Hani-
kenne et al. (2008) showed that the enhanced HMA4 ex-
pression in A. halleri results in the hyperaccumulation of Zn 
and hypertolerance to Cd. 

MATE: Known as a family of multi-drug and toxic 
compound extrusion (or efflux) membrane proteins (Del-
haize et al. 2007). Some members of the family function as 
drug/cation antiporters that remove toxic compounds and 
secondary metabolites from the cytosol by exporting them 
out of the cell or sequestering them to the vacuole. FRD3 is 
a member of the MATE subfamily, presumed to efflux cit-
rate into the root vascular tissue. Citrate is necessary for the 
transport of Fe and possibly also Zn (Durrett et al. 2007). 
FRD3 is constitutively overexpressed in A. halleri and T. 
caerulescens compared with A. thaliana and may play a 
role in Zn translocation (Talke et al. 2006; van de Mortel et 
al. 2006). 

OPT: These are a superfamily of oligopeptide transpor-
ters including the yellow-stripe 1-like (YSL) subfamily 
(Haydon and Cobbett 2007). Some YSL transporters are 
involved in the loading and unloading of NA-metal chelates 
from the vascular tissues. There is evidence for a role of 
YSL transporters in the Zn and Ni hyperaccumulation of T. 
caerulescens, especially for TcYSL3 (T. caerulescens yel-
low-stripe-like) and TcYSL7 (T. caerulescens yellow-stripe-
like), which are expressed in xylem parenchyma and 
phloem (Gendre et al. 2007; Haydon and Cobbett 2007), 
further, TcYSL3 was shown to transport Ni-NA chelates 
(Gendre et al. 2007). 

 
3. Sequestration in the shoot vacuoles 
 
The ability to hyperaccumulate Zn, Ni and Cd seems to be 
governed, at least in part, by an enhanced capacity of metal 
storage in leaf vacuoles. Several families of transporters are 
involved in this process. 

CDF: Known as a family of cation diffusion facilitators 
(CDF) in plants, also called as metal transporter proteins 
(MTPs), contains members involved in the transport of Zn2+, 
Fe2+, Cd2+, Co2+ and Mn2+ from cytoplasm to organelles and 
endoplasmic reticulum (Peiter et al. 2007). ZAT (zinc trans-
porter of A. thaliana), renamed AtMTP1, encodes a Zn 
transporter involved in vacuolar sequestration in A. thaliana. 
Overproduction of the Zn transporter ZAT in A. thaliana 
resulted in higher Zn tolerance and a two-fold higher Zn 
accumulation in roots (van der Zaal et al. 1999). MTP1 
homologs seem to be involved in the Zn hypertolerance trait 
(Dräger et al. 2004). In T. caerulescens the AtMTP1 homo-
log, ZTP1, was highly expressed in leaves and could also 
play a role in vacuolar sequestration (Assunção et al. 2001). 

In the Ni/Zn hyperaccumulator T. goesingense, other CDF 
members, TgMTP1t1 and TgMTP1t2 (derived from one 
single copy genomic sequence), were proposed to be in-
volved in Ni vacuolar detoxification (Persans et al. 2001). 
The TgMTP1 seems to be localized at the plasma mem-
brane, where it could mediate both Ni and Zn efflux from 
the cytoplasm (Kim et al. 2004). Other CDF members also 
may play a role in the hypertolerance of other trace metals. 
ShMTP is involved in the vacuolar storage of Mn in the 
Mn-hypertolerant tropical legume Stylosanthes hamata and 
conferred higher tolerance and accumulation of Mn when 
over expressed in A. thaliana (Delhaize et al. 2003). 

HMA: Known as the (heavy metal transporting 
ATPases), homolog of the AtHMA3 (A. thaliana heavy 
metal transportign ATPases) in Zn hyperaccumulation was 
suggested by comparative transcriptome analysis between A. 
halleri (shoot) or T. caerulescens (root) and A. thaliana or T. 
arvense (Becher et al. 2004; Hammond et al. 2006; van de 
Mortel et al. 2006). Yeast expression studies supported a 
role for AhHMA3 (A. halleri heavy metal transportign 
ATPases) in Zn vacuolar transport (Becher et al. 2004). 

CaCA: Known as the Ca2+/cation antiporter (CaCA) 
superfamily, is a vacuolar Mg2+ and Zn2+/H+ exchanger 
(MHX) (Shaul et al. 1999). The MHX protein was present 
in the leaves of A. halleri at much higher concentrations 
than in A. thaliana and was therefore proposed to play a 
role in Zn vacuolar storage (Elbaz et al. 2006). Members of 
other CaCA subfamilies may also play a role in metal 
detoxification. CAX is the acronym for cation exchanger. It 
is a large family of membrane proteins, which was recently 
subdivided into ‘true’ CAX (CAX1–CAX6) and CCX (cal-
cium cation exchanger) (CCX 1–5, previously named CAX 
7–11) (Shigaki et al. 2006) and all seem to be involved in 
metal vacuolar sequestration, in particular of Cd. 

ABC: Known as the ATP-binding cassette transporters 
(ABC) superfamily are involved in vacuolar sequestration 
of various metals or xenobiotics and many physiological 
processes (Song et al. 2003). The two subfamilies, MRP 
(multi-drug resistance protein) and PRD [PTS (phospho-
transferse system) regulation domain protein] are involved 
in the transport of chelated heavy metals or the organic 
acids necessary for the transport of heavy metals. There is 
strong evidence for their role in trace metal homeostasis 
(Song et al. 2003; Hanikenne et al. 2005; Kim et al. 2006) 
and they could mediate trace metal hyperaccumulation, in 
particular for vacuolar sequestration. Two ABC genes 
(AtMRP10 and ATH13) were identified in T. caerulescens: 
the AtMRP10 (A. thaliana multi-drug-resistance related pro-
tein gene) homolog was shown to be differentially expressed 
in the shoots of two T. caerulescens populations displaying 
contrasting Zn tolerance and accumulation (Hassinen et al. 
2007) and ATH13 was more expressed in the shoot com-
pared with A. thaliana (van de Mortel et al. 2008). However, 
direct evidence for a role of these genes in vacuolar seques-
tration is lacking. 

Genetic manipulation of metal transporters has altered 
metal accumulation in plants. Transfer of Zn transporter-
ZAT gene (also known as AtMTP1) from T. goesingense to 
A. thaliana resulted in 2-fold higher Zn accumulation in 
roots (van der Zaal et al. 1999). Introduction of calcium 
vacuolar transporter CAX-2 from A. thaliana to tobacco 
resulted in enhanced accumulation of Ca, Cd and Mn (Hir-
schi et al. 2000). Enhanced Ni tolerance was obtained by 
transfer of another transporter gene-NtCBP4 that encodes 
for a calmodulin binding protein (Arazi et al. 1999). Trans-
fer of yeast protein (YCF1), a member of ABC transporter 
family involved in transfer of Cd into vacuoles by conju-
gation with GSH, transfer and overexpression in A. thaliana 
resulted in transgenic plants with enhanced lead and Cd 
tolerance (Song et al. 2003). Transfer of yeast FRE1 and 
FRE2 (FERRITIN genes) encoding ferric reductase when 
transferred to tobacco, the iron content of the plants was 
enhanced 1.5-fold (Samuelsen et al. 1998). Increased Fe 
tolerance was also obtained by overexpression of metal 
transporter AtNramp1 (FERRITIN genes) (Curie et al. 
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2000), while incorporation of another gene AtNramp3 
(FERRITIN genes) led to reduced Cd tolerance (Thomine et 
al. 2000). 

Enhanced accumulation of various metals (Fe, Cu, Mn, 
Zn, Mg) was observed in an Arabidopsis mutant for FRO2 
(FERRICCHELATE REDUCTASE gene) with enhanced 
ferric-chelate reductase activity (Robinson et al. 1999). In 
addition to overexpressing metal transporters, it is also pos-
sible to alter their metal specificity. For instance, while 
IRT1 (ZIP family of metal transporters), the Arabidopsis 
iron transporter, can transport Fe, Zn, Mn, and Cd, the sub-
stitution of one amino acid was shown to result in loss of 
either Fe and Mn transport capacity, or Zn transport capa-
city (Rogers et al. 2000; Vert et al. 2002). With the over-
expression of such engineered transporters, it may be pos-
sible to tailor transgenic plants to accumulate specific 
metals. 
 
Metallothioneins, phytochelatins and metal 
chelators 
 
Variation in expression levels of MT family members be-
tween plant populations has been associated with variation 
in Cu tolerance (Van Hoof et al. 2001; Jack et al. 2007). 
MTs of the types 1, 2 and 3 are predominantly regulated by 
Cu, and seem to function in Cu accumulation and phloem 
Cu transport (Guo et al. 2008). Over expression of several 
members of the MT family (type 1, 2 and 3) compared with 
Arabidopsis, and variations in expression levels between 
populations have been reported for T. caerulescens (Roo-
sens et al. 2004, 2005; Rigola et al. 2006; Hassinen et al. 
2007). Several lines of evidence suggested that TcMT3 may 
be involved in Cu homeostasis (Roosens et al. 2004). 

Metallothionein genes have been cloned and introduced 
into several plant species (Thomas et al. 2003). Transfer of 
human MT-2 gene in tobacco or oil seed rape resulted in 
plants with enhanced Cd tolerance (Misra and Gedamu 
1989) and pea MT gene in A. thaliana enhanced Cu ac-
cumulation (Evans et al. 1992). The choice of promoter 
used was found to be of great importance for metallothio-
nein genes. The ribulose biphosphate carboxylase (rbcs) 
promoter was repressed by high Cd concentration, while 
mannose synthase promoter was induced by Cd (Stefanov et 
al. 1997). Transgenic plants with increased phytochelatin 
levels through overexpression of cysteine synthase resulted 
in enhanced Cd tolerance (Harada et al. 2001). Yeast CUP1 
gene transferred to cauliflower resulted in 16-fold higher 
Cd tolerance and accumulation (Hasegawa et al. 1997). 
Various MT genes – mouse MTI, human MTIA, human MTII, 
Chinese hamster MTII, yeast CUPI and pea psMTA – have 
been transferred to Nicotiana tabacum, Brassica species 
and A. thaliana (Maiti et al. 1988, 1989; Misra and Gedamu 
1989; Maiti et al. 1991; Evans et al. 1992; Brandle et al. 
1993; Pan et al. 1994; Elmayan and Tepfer 1994; Hattori et 
al. 1994; Hasegawa et al. 1997), resulting in constitutively 
enhanced Cd tolerance in these plants. When MT was of 
plant origin as in the case of Ps MTA from Pisum sativum 
and expressed in A. thaliana, more Cu accumulated in the 
roots of the transformed plants than control plants (Evans et 
al. 1992). 

Phytochelatins has the structural formula (GluCys)nGly, 
(where n = 2–11) are ubiquitous in plants (Clemens 2006). 
The PC have a role in metal detoxification, but they do not 
seem to be involved in Cu, Cd, Zn, Co and Ni hypertoler-
ance (Ebbs et al. 2002; Schat et al. 2002; Hernandez-Allica 
et al. 2006). In hyperaccumulators, just as in nonhyperac-
cumulators, PC are mainly induced in the roots, in parti-
cular by Cd, but not by Zn or Ni, and considerable rates of 
Cd-induced PC accumulation have only been found in Cd-
sensitive, nonmetallicolous or serpentine populations of T. 
caerulescens and in a nonaccumulating S. alfredii (Schat et 
al. 2002; Sun et al. 2007). Transgenic B. juncea overexpres-
sing different enzymes involved in phytochelatin synthesis 
were shown to extract more Cd, Cr, Cu, Pb and Zn than 
wild plants (Zhu et al. 1999a, 1999b). Transgenic Indian 

mustard with higher levels of GSH and PC were developed 
by overexpression of two enzymes-�-glutamylcysteine syn-
thetase (�-ECS) or glutathione synthetase (GS) and they 
showed enhanced Cd tolerance and accumulation (Zhu et al. 
1999a, 1999b). Arsenic, which is normally a very effective 
inducer of PC synthesis in other species, induces only in-
considerable PC concentrations in the roots of the As hyper-
accumulator, P. vittata (Zhao et al. 2003; Raab et al. 2005; 
Pickering et al. 2006). These results suggest that PC may 
not be essential for the hyperaccumulation phenotype. 

Expression of citrate synthase gene (De la Fuente et al. 
1997) resulted in plants with enhanced aluminum tolerance. 
These plants produced up to 10-fold citrate in their roots 
and released 4-fold more compared to control plants. Trans-
fer of nicotinamine amino-transferase genes (NAAT) resul-
ted in over production of iron chelator-deoxymugineic acid 
in rice (Takahashi et al. 2001). The transgenic plants re-
leased phytosiderophores and grew better in Fe deficient 
soils. Transfer of iron binding protein ferritin enhanced the 
levels of iron in leaves of tobacco (Goto et al. 1998) and 
rice (Goto et al. 1999). Overexpression of 1-aminocyclo-
propane-1-carboxylic acid (ACC) deaminase in transgenic 
L. esculentum plants resulted in enhanced tolerance to a 
variety of metals (Grichko et al. 2000). 

Histidine (His) is considered to be the most important 
free amino acid involved in hyperaccumulation (Callahan et 
al. 2006). Enhanced expression of the His biosynthetic 
pathway enzyme ATPphosphoribosyltransferase was ob-
served in the Ni hyperaccumulator Alyssum lesbiacum in 
comparision to the nonhyperaccumulator species Alyssum 
montanum (Ingle et al. 2005). However, His overproducing 
transgenic A. thaliana lines displayed elevated Ni tolerance, 
but did not exhibit increased Ni concentrations in xylem sap 
or in leaves (Ingle et al. 2005). This suggests that His-
dependent Ni xylem loading may not be universal and that 
additional factors are required in at least A. thaliana. Recent 
results suggest that Ni-His complex formation strongly in-
hibits the retention of Ni in root cell vacuoles (Verbruggen 
et al. 2009). 

Nicotianamine is indicated to be involved in metal 
hyperaccumulation of plants. The study of NA synthesis 
from 3 S-adenosyl-methionine (SAM) by NA synthase 
(NAS) gene indicated higher expression of SAM synthetase 
genes, involved in enhanced metal accumulation (Talke et 
al. 2006). In T. caerulescens Ni–NA complexes were identi-
fied in Ni-exposed roots, and constitutively highly expressed 
TcNAS1 was observed in the shoot of T. caerulescens plants 
(Mari et al. 2006). In the case of Zn, NA acts as a cytosolic 
buffer keeping Zn ions in a detoxified form for transloca-
tion to the shoot. In response to Ni, NAS was also induced 
in roots, where it chelated absorbed Ni and facilitated its 
transport to the shoot. It is proposed that increase in Ni 
tolerance could be gained upon NAS overexpression in 
nontolerant species (Douchkov et al. 2005; Kim et al. 2005; 
Pianelli et al. 2005). It was shown that in Thlaspi NA is in-
volved in hyperaccumulation of Ni but not of Zn (Callahan 
et al. 2007). 

Concentrations of organic acids such as citrate and mal-
ate are constitutively elevated in hyperaccumulators (Lee et 
al. 1978; Ueno et al. 2005; Montargès-Pelletier et al. 2008). 
However, due to the low association constants of organic 
acids with metals their role in the hyperaccumulation me-
chanism such as long-distance transport seems not possible) 
(Callahan et al. 2006). However, their role for vacuolar 
sequestration of metals could be predominant as formation 
of metal–organic acid complexes is favored in the acidic 
environment of the vacuole (Haydon and Cobbett 2007). In 
A. halleri a large proportion of Zn in the shoot was associ-
ated with malate (Sarret et al. 2002). 
 
Alteration of metabolic pathways 
 
Rather than accelerating existing processes in plants, an al-
ternative approach is to introduce an entirely new pathway 
from another organism. For example, following this ap-
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proach Meagher et al. (2000) and coworkers introduced two 
bacterial genes in plants that together converted methylmer-
cury to volatile elemental mercury. For phytovolatilization 
of mercury the MerA and MerB genes were introduced into 
plants, which resulted in transgenic plants being several 
fold tolerant to Hg and volatilized elemental mercury 
(Bizily et al. 2000). Similarly, Dhankher et al. (2002, 2006) 
developed hyperaccumulation in transgenic Arabidopsis 
plants which could transport oxyanion As(V) to above-
ground, reduce to As(III) and sequester it to thiol peptide 
complexes by transfer of E. coli arsC and �-ECS genes. 

Alternative cellular genetic recombination approach 
was used to transfer hyperaccumulation capacity to a non-
accumulator high biomass species (Brewer et al. 1999; 
Dushenkov et al. 2002). It was demonstrated that somatic 
hybrids created by electrofusion of isolates from hyperac-
cumulator T. caerulescens and crop plant B. napus L. had 
metal-tolerant levels compared with T. caerulescens (Bre-
wer et al. 1999). Dushenkov et al. (2002) demonstrated that 
asymmetric hybrids produced between B. juncea and T. cae-
rulescens combined valuable properties from the two des-
cents. The hybrid inherited high biomass production from B. 
juncea along with heavy metal tolerance and Zn and Ni 
accumulation potency from T. caerulescens. Some of the 
hybrids showed high biomass producton combined with 
high metal tolerance and accumulation, making them attrac-
tive for metal phytoextraction. Genetic engineering by 
developing hairy-root cultures of plants, using Agrobacte-
rium rhizogenes results in fast growing root culture that can 
be grown in vitro indefinitely. Hairy-root culture of Thlaspi 
caerulescens was shown to be more tolerant to Cd, and 
accumulated 1.5- to 1.7-fold more Cd than hairy roots of 
nonaccumulator species (Nedelkoska and Doran 2000). 
 
Oxidative stress prevention and enhance 
production of intracellular chaperones 
 
Glutathione (Glu-Cys-Gly) is a major cellular antioxidant. 
Glutathione S-transferase mediates conjugation of metal 
ions with GSH and transport them metal complex to vacu-
ole (Marrs 1996). Glutathione and free amino acids are 
known to induce heavy-metal tolerance through antioxidant 
action and metal-chelating activity (Rauser 1999) in ad-
dition to being the precursor of PC. Increased production of 
GSH in T. goesingense and other Thlaspi Ni hyperaccumu-
lators provide protection against oxidative damage under 
high Ni concentrations (Freeman et al. 2004). Enhanced 
GSH synthesis is driven by constitutive activation of the 
sulfur assimilation pathway through enhanced activity of 
mitochondrial serine acetyltransferase (SATm) (Freeman et 
al. 2004). The metal tolerance profile of T. goesingense was 
mimicked in A. thaliana expressing the Tg SATm gene 
(Freeman and Salt 2007). In T. caerulescens, Cd exposure 
also enhanced sulfate and GSH metabolism (van de Mortel 
et al. 2008), and the foliar and root GSH concentrations 
increased in a hyperaccumulating Sedum alfredii population, 
but not in a nonaccumulating one, where GSH decreased 
owing to production of PC. 

Alteration of oxidative stress related enzymes resulted 
in altered metal tolerance as in the case of enhanced Cu and 
Al tolerance by overexpression of GSH-S-transferase and 
peroxidase (Ezaki et al. 2000, 2001). Increased S supply 
resulted in an overall increase in total sulfate and GSH in 
leaves and tubers of potato. The concentrations of the total 
free amino acid pools increased two to three fold in leaves 
and tubers with increasing S supply (Hopkins et al. 2000). 
 
Activation of differential defensive response and 
other adaptive mechanisms 
 
High concentrations of ROS at cellular level cause oxi-
dative stress and toxicity symptoms observed at whole plant 
level. The high ROS production by metal ions such as As 
and Cr could signal responses at gene expression level to 
increase active scavenging. Higher energy allocation for 

active scavenging could deprive the plant of its quota of 
energy required for normal growth; furthermore, the ab-
sence of heavy-metal sequestering PC is more energy inten-
sive. 

In hyperaccumulators, modification of metals homeo-
stasis, other than the hyperaccumulated ones takes place, 
such as Cu (Roosens et al. 2004; Talke et al. 2006), Mn 
(Talke et al. 2006; Krämer et al. 2007) and Fe (Filatov et al. 
2006; Hammond et al. 2006; Talke et al. 2006; van de 
Mortel et al. 2006). Genes associated with iron homeostasis, 
such as a cytosolic aconitase gene IRT1 (ZIP family of 
metal transporters), FERRITIN genes (FER1, FER2), 
NRAMP3 (natural resistance associated macrophage), iron 
regulated transporter 2 (IREG2) and ferric chelate reductase 
genes (FRO2), are overexpressed in A. halleri and/or T. 
caerulescens (Becher et al. 2004; Weber et al. 2004; Filatov 
et al. 2006; Talke et al. 2006; van de Mortel et al. 2006, 
2008). In A. thaliana, NRAMP3 is expressed in the vascular 
bundles of roots, stem and leaves. The AtNRAMP3 is 
localized on the tonoplast and remobilize vacuolar pools of 
Fe, Cd and Mn (Thomine et al. 2003). It is suggested that 
under hyperaccumulation macronutrient homeostasis takes 
place through overexpression of genes predicted to encode 
K+ transporters and high-affinity phosphate transporters 
(Hammond et al. 2006; van de Mortel et al. 2006). 

It is observed that hyperaccumulation takes place 
through modifications of signals and proteins usually in-
volved in pathogen response. There was constitutive over-
accumulation of salicylic acid (SA) in nickel hyperaccumu-
lators in the Thlaspi genus (Freeman et al. 2005). SA is a 
key signal involved in plant pathogen response and may 
thus contribute to the elevated expression of pathogen-res-
ponsive genes. Overexpression of defensins/PDF genes was 
observed in A. halleri and T. caerulescens compared with A. 
thaliana (Becher et al. 2004; Talke et al. 2006; van de 
Mortel et al. 2006). A. halleri defensin cDNAs (AhPDF) 
specifically induced higher Zn tolerance in yeast (Mirouze 
et al. 2006). Defensins accumulated to a higher degree in A. 
halleri than in, and transgenic A. thaliana plants overex-
pressing AhPDF also showed slightly increased tolerance to 
Zn. 
 
Alteration in roots 
 
Metal availability and mobility in the rhizosphere can be in-
fluenced by root exudates, such as siderophores, organic 
acids and protons, as well as by rhizosphere microorga-
nisms (Whiting et al. 2001; Zhao et al. 2001; Wenzel et al. 
2003). However, there is no definite answer to the question 
of whether, and how, hyperaccumulators and nonhyperac-
cumulators, or their root-associated microbial communities, 
have different effects on the metal availability in their rhi-
zospheres. Further, enhanced production of these root exu-
dates in the rhizosphere is yet to be tried. It is essential to 
have plants with highly branched root systems with large 
surface area for efficient uptake of toxic metals. It has been 
shown that A. rhizogenes could enhance the root biomass in 
some hyperaccumulator plants. The hairy roots induced in 
some of the hyperaccumulators were shown to have high 
efficiency for rhizofiltration of radionuclides (Eapen et al. 
2003) and heavy metals (Nedelkoska and Doran 2000). 
 
Enhanced biomass production 
 
Biomass of known hyperaccumulators can be altered by 
introduction of genes which affect phytohormone synthesis 
resulting in enhanced biomass. The biosynthetic pathways 
for most of the plant hormone have been elucidated and 
genes encoding key enzymes have been cloned (Woodward 
and Bartel 2005). These advances offer new opportunities 
to manipulate hormone content and regulate their biosyn-
thesis (Hedden and Phillips 2000). Increased giberellin bio-
synthesis in transgenic trees was shown to promote growth 
and biomass production (Eriksson et al. 2000). However, 
little work has been carried out in this area for improving 
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biomass of plants for phytoremediation. Each metal will 
have its own specific mechanism for uptake, translocation 
and sequestration and hence it is essential to design suitable 
strategies for developing transgenic plants specific for each 
metal. 
 
TRANSGENIC PLANTS WITH ENHANCED 
ARSENIC TOLERANCE 
 
Some of the strategies adopted for development of trans-
genic plants for enhancing As and Cr tolerance are outlined 
hereunder. Specific genes have been incorporated into plant 
systems and transgenics are developed that could be grown 
on As contaminated soil and water for phytoremediation of 
As (Table 1). Three different strategies have been adopted 
to bring out transgenic plants viz. (i) target genes obtained 
from other system and expressed in host systems to enhance 
metal (As, Cd, Co, Cu, Ni, Pb and Zn) tolerance, (ii) target 
gene over expressed in the same system and (iii) target gene 
silenced in the same system. 
 
Different genes expressed in host plant systems 
 
1. �-Glutamylcysteine synthetase 
 
The �-glutamylcysteine synthetase (�-ECS) gene mediates 
biosynthesis of GSH, which is the intermediate for phyto-
chelatin synthesis. Dhankher et al. (2002) developed gene-
tically engineered transgenic Arabidopsis plant that trans-
ported As to the above ground biomass, reduced it to As(III), 
and sequestered As(III) as thiol-peptide complexes. They 
engineered coexpression of, the E. coli arsenate reductase 
(arsC) and �-ECS genes in Arabidopsis plants under the 
control of light-induced soybean Rubisco promoter 
(SRS1p)/ArsC and constitutive actin promoter (ACT2p)/�-
ECS, respectively. The transgenic Arabidopsis plants ex-
pressing SRS1p/ArsC and ACT2p/�-ECS together showed 
substantially greater As tolerance than wild-type plants or 
plants expressing only �-ECS gene. Moreover, when grown 
on As supplemented growth medium [15 mg L�1 As(V)], 
these transgenic Arabidopsis plants accumulated 4-17 fold 
greater fresh shoot weight and accumulated 2-3 fold more 
As per gram of tissue than wild-type plants or plants ex-
pressing either of the �-ECS or ArsC gene alone (Dhankher 
et al. 2002). 

Li et al. (2006) manipulated the E. coli �-ECS gene in 
Arabidopsis plant to assess the role of �-glutamylcysteine 
(�-EC) and GSH in long distance transport of the thiol 
reactive metal ions from roots to shoots. The thiol peptides 
containing �-EC, GSH and PC plays important role in de-

toxifying thio-reactive metals and As (Cobbett and Golds-
brough 2002). The E. coli �-ECS gene, S1ptECS (Fig. 5) 
was expressed in ECS-deficient heavy-metal sensitive cad2-
1 mutant of A. thaliana. In the transgenic Arabidopsis 
plants, �-ECS protein was found to be more in shoots and 
no �-ECS protein was detected in the roots. In the presence 
of As; �-EC, PC2, and PC3 peptide concentration was 
increased 6-100 fold in the roots of transgenic plant lines. 
Glutathione levels in the shoots and roots of the transgenic 
plants were 7- to 40-fold greater than in the cad2-1 mutant 
and 2- to 5-fold greater than in the wild type. The elevated 
levels of GSH in the transgenic line were relatively inde-
pendent of treatments with toxic elements. Amount of GSH 
was 2-5 fold increased in S1ptTECS-complemented cad2-1 
lines in the presence and absence of As. The shoot-specific 
expression of a bacterial �-ECS in the Arabidopsis cad2-1 
mutant significantly increased levels of �-EC and GSH in 
both roots and shoots of the transgenic Arabidopsis plants 
compared to mutant plants, and GSH levels in roots were 
increased in comparison to the wild type. These data de-
monstrate that phloem transport is involved for long dis-
tance transport of the EC peptide and perhaps other thiol-
peptides, from shoots to roots. The shoot specific expres-
sion of �-ECS gene complemented the sensitivities of the 
mutant to three thiol-reactive toxicants. Further, the trans-
genic S1ptTECS plants were relatively tolerant to As(V), Hg 
and Cd compared to the mutant itself, and even more toler-
ant to As(V) than wild type. However, there was no simple 
direct relationship between increasing levels of thiol-pep-
tides and increase in aboveground accumulation of thiol 
reactive toxic elements. The expression of high levels of 
thiol pepetides did not enhance As accumulation in the 
shoots relative to the wild type plants. It is imperative that 
�-ECS enzyme alone seems not prospective for enhancing 
As accumulation. 

 

Table 1 Transgenic plants developed with foreign genes to enhance arsenic tolerance/accumulation. 
Gene transferred Gene source/origin Target plant species Response in transgenic plants Reference 
Target genes expressed in diferent host systems to enhance As tolerance 

Enterobacter cloacae UW4 1-
aminocyclopropane-1-carboxylate 
(ACC) deaminase gene acdS 

Enterobacter 
cloacae CAL2 
bacterium 

Brassica napus Germination of seeds and accumulation 
of arsenic were more than non-
transformed plant 

Nie et al. 2002 

Arsenate reductase (arsC) and �-
glutamylcysteine synthetase (�-ECS) 

E. coli Arabidopsis thaliana Arsenic accumulation enhanced 2-3 fold Dhankher et al. 2002

Phytochelatin synthase (PvPCS1) Pteris vittata Saccharomyces cerevisae Cd tolerance increased  Dong et al. 2005 
�-glutamyl cysteine synthetase (ECS) 
gene (S1ptTECS) 

E. coli Arabidopsis thaliana Glutathione levels in shoot and root was 
enhanced 2-5-fold 

Li et al. 2006 

Target gene over expressed in the same system 
Phytochelatin synthase (AtPCS1) Arabidopsis thaliana Arabidopsis thaliana Thiol peptides were increased 10 fold 

and amount of �-glutamylcystein (�-EC) 
was higher. But, arsenic accumulation 
was not increased than wild type. 

Li et al. 2004 

Target gene silenced in the same system 
Arsenate reductase (ACR2) Arabidopsis thaliana Arabidopsis thaliana Knockdown plant lines accumulated 10-

16-fold more arsenic in shoots than wild 
type plants, but fresh weight of 
knockdown plant was 5-6- fold less than 
control. 

Dhankher et al. 2006 

 

S1::ECS

TATA
ATG TAA

box
start stop

5’UTR 3’UTR1.7kb ECS cDNA

ts

Fig. 5 Physical map of the S1ptT::ECS gene (E. coli �-ECS gene cloned 
into S1pt expression cassette) (based on Li et al. 2006). TATA box 
denotes sequence specifying the start of transcription; ts-start of trans-
cription. 5�UTR and 3�UTR are transcribed but untranslated regions flan-
king the �-ECS gene (1.7 kb �-ECS cDNA) in the multicloning site. PA 
denotes poly (A) addition sites; ATG and TAA denotes initiation and 
termination codons. 
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2. Arsenate reductase 
 
An initial step in As metabolism is the enzymatic reduction 
of As(V) to As(III) mediated by the enzyme arsenate reduc-
tase (ACR) (Rosen 1999, 2002). It renders As(III) amenable 
for conversion to non-toxic form for efflux or chelation. 
Activity of this enzyme was reduced in the roots of the host 
system to enhance As accumulation in the above ground 
biomass for phytoremediation (Dhankher et al. 2006). In 
the transgenic A. thaliana plants, the arsenate reductase 
gene (ACR2) (Fig. 6) that converts As(V) to As(III) in roots, 
was silenced. The RNA interference gene construct 
(ACR2Ri) (Fig. 7) was used to silence the Arabidopsis 
ACR2 gene expression. By blocking this gene, they raised 
transgenic knockdown plant that mobilized more As(V) to 
the above ground biomass than wild type. Their results 
showed that the ACR2Ri knockdown lines had 10–16-fold 
more As in shoots and retained less As in roots than the 
wild types. This model predicts more As(V) mobility to 
shoots, therefore ACR2Ri knockdown lines accumulated 6–
20 times higher concentration of As in shoots and had less 
As in roots than wild type. The ACR2Ri lines germinated as 
good as wild type in 11.23 mg L�1 As(V). But, after 3 weeks 
duration the knockdown plants attained 5-6–fold less fresh 
weight than wild type without much phenotypic differences. 
This work demonstrated plants engineered for more As(V) 
uptake and accumulation in the aerial biomass through 
genetic engineering. The ACR2Ri knockdown transgenic 
lines have potential for absorption of As(V) from the As 
contaminated soil and water. It shows that arsenate reduc-
tase enzyme has important role in the phytoremediation for 
As and it can be used as a tool for enhancing As accumu-
lation in the plant. Combining a knockdown of ACR2 with 
the expression of E. coli arsC and �-ECS genes (Dhankher 
et al. (2002) has the potential to generate a super hyper-
accumulator with normal plant growth and 30- to 40-fold 
higher levels of aboveground As. Such plants could contri-
bute significantly to the remediation of As pollution. It 
could be possible to silence homologues of ACR2 in field-
adapted grasses, shrubs, and trees suited to the phytoreme-
diation of As-contaminated sites and water resources. 

 
3. Phytochelatin synthase 
 
Phytochelatin synthase (PCS) gene encodes the enzyme 
phytochelatin synthase for biosynthesis of PC for chelation 
of metals. Over expression of phytochelatin synthase gene 

in (Li et al. 2004) the Arabidopsis plant system increased 
tolerance to As and Hg, and hypersensitivity to Cd. The A. 
thaliana PCS gene AtPCS1 was overexpressed in Arabidop-
sis under the strong constitutive Arabidopsis actin regu-
latory sequence (A2) (Fig. 8). The A2::AtPCS1 plants were 
highly resistant to As, accumulating 20–100 times more 
biomass on 18.72 mg L�1 and 22.47 mg L�1 As(V) than wild 
type. The transgenic plants synthesized 10-fold greater 
levels of thiol peptides relative to wild type plants and con-
centration of �-EC was also significantly increased (12-fold 
in roots) after As treatment. Accumulation of metal was 
presumed to be higher due to increased amount of thiol 
peptides. But, their results showed no significant increase in 
As accumulation in the above ground biomass of the trans-
genic plants relative to wild type plants. This was attributed 
to the increased efflux of As(III) from the roots, similar to 
the efflux mechanisms in yeast and bacteria. It was pre-
sumed that the presence of appropriate cofactor metal ions 
enhanced the PCS enzymic activity in roots. This leads to 
higher levels of thiol-peptides in roots, which in turn sup-
port enhanced efflux of As(III) from root cells. Cellular ef-
flux could then support short- and long-distance transport of 
As and its elimination from the entire plant. This study 
reported that overexpression of phytochelatin synthase gene 
conferred significant resistance to As and weak resistance to 
mercury by the transgenic plants, while they were hyper-
sensitive to Cd(II) compared with wild type plants. Thus, it 
indicates that manipulation in the PCS gene could give rise 
to increase amount of thiol peptides providing high levels of 
As resistance, however, more accumulation of As in the 
transgenic plants may not be possible. Further, genetic 
modification or alternative approaches will be needed to 
develop As hyperaccumulation. 

Cloning and characterization of phytochelatin synthase 
gene, PvPCS1 from the As hyperaccumulator P. vittata is 
reported (Dong et al. 2005). They isolated, and sequenced 
the full length cDNA encoding for phytochelatine synthase. 
This gene showed very low identity with most known plant 
PCS genes. Homology of the P. vittata PvPCS1 gene with 
other plant systems was confined to two highly conserved 
regions, which are 60 bases long near the 5’ end of the se-
quence having 85-95% sequence similarity. The amino acid 
sequence deduced from the cDNA sequence of PvPCS1 
predicts a protein of 512 amino acids with a molecular 
weight of 56.9 KDa. When compared with known PCS 
polypeptides from other plant systems, PvPCS1 polypeptide 
showed 60% identity in the N-terminal end but only limited 
similarity in the C-terminal portion. They observed that ex-
pression of PvPCS1 gene leads to increased Cd tolerance in 
S. cerevisae. The isolation of the PCS gene (PvPCS1) from 
the hyperaccumulator P. vittata reported here may provide 
alternatives to gather information for better understanding 
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Fig. 6 Map of the exon structure of Arabidopsis ACR2 gene (based on 
Dhankher et al. 2006). TATA box is the sequence specifying transcription 
start site and TS-110 denote the nucleotide position within the coding 
sequences from the transcription start site. ATG and TAA denotes initia-
tion and termination codons, PA denotes predicted polyadenylation site, 
3�UTR untranslated regions. 
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Fig. 7 The RNA interference (RNAi) gene construct ACR2Ri used to 
silence the ACR gene expression in Arabidopsis (based on Dhankher et 
al. 2006). TATA box denotes sequence for start of transcription in the 
35Sp (CaMV35S promoter) and TS denote the nucleotide position within 
the coding sequences from the transcription start site. PA denotes poly-
adenylation site in the NOSt (nitric-oxide synthase terminator sequence). 
3’UTR denotes the 3’UTR sequence (207 nucleotides after the stop 
codon) from the AtACR2 (Arabidopsis ACR2 gene) assembled in reverse 
and forward orientations. The two 3’UTR sequences flanks the GUS gene 
(1000 nucleotide �-glucuronodase spacer region). 

TATA
ATG start TAA

box
HA Tag stop

5’UTR 3’UTRAtPCS1 cDNA

ts PA

NcoI BamHI
1.3kb ACT2P 1.6kb ACT2t

Fig. 8 Physical map of A2::AtPCS1: The AtPCS1 gene (Arabidopsis 
phytochelatin synthase) under control of the Arabidopsis ACT2 actin 
promoter (based on Li et al. 2004). ACT2p and ACT2t denotes the 
Arabodopsis actin2 promoter and terminator region, respectively. TATA 
box denotes sequences specifying start of transcription, ts denote the nuc-
leotide position within the coding sequences from the transcription start 
site. 5�UTR-leader intron and 3�UTR-polyadenylation sequences; ATG and 
TAA are initiation and termination codons, PA denotes polyadenylation as 
poly (A) addition sites, HA Tag denotes an amino acid sequence to recog-
nize the influenza HA epitope for overexpression of the AtPCS1 gene in 
transgenic Arabodopsis plants. NcoI and BamHI denote restriction enzyme 
cloning sites. 
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of the role of PCS in metal hyperaccumulation. Further in-
vestigation is needed to determine the functional signifi-
cance and biological role of PvPCS1, especially its role in 
metal hyperaccumulators. Thus, the exact role of PC in 
metal hypertolerance, and especially in metal hyperaccumu-
lation, remains to be determined. 

 
4. acdS gene 
 
Nie et al. (2002) assessed phytoremediation of As(V)-con-
taminated soil using transgenic canola (B. napus) plants and 
nontransformed plants alongwith growth promoting bac-
terium Enterobacter cloacae CAL2. The transgenic canola 
plants expressed Enterobacter cloacae UW4 ACC deami-
nase (EC 4.1.99.4) gene (acdS) reducing ethylene level in 
the plants. The transgenic plant was protected from harmful 
effect of different metals like As, Cd, Co, Cu, Ni, Pb and Zn. 
Further, the Enterobacter cloacae CAL2 bacterium con-
taining ACC deaminase promoted canola root elongation, 
and produces indoleacetic acid, siderophores and antibiotics, 
those stimulated plant growth. Transgenic canola plants 
grew to an appreciably greater extent than non-transformed 
canola plants. In the presence of 150 mg L�1 As(V), about 
70% of the transgenic canola seeds germinated, where as a 
maximum 30% germination was recorded for the non-trans-
formed seeds. The shoots of transgenic canola contained 
less As(V) than shoots of nontransformed plants that showed 
limited translocation of As(V) from roots to shoots lowering 
the toxic effect of As(V) on plant. But, each transgenic 
canola plant accumulated approximately four times as much 
As(V) on a dry-weight basis, as non-transformed canola. 
Increase in fresh and dry weights of canola roots and shoots, 
and the shoot chlorophyll contents of the transgenic plant in 
comparison to the untransformed plants further supported 
the hypothesis that lowering ethylene levels by the expres-
sion of acdS gene protects the plant against As(V) inhibition 
along with plant growth promoting bacterium E. cloacae 
CAL2. 
 
Approaches to enhance Cr tolerance by plants 
 
1. Enhance translocation and uptake 
 
The poor translocation of Cr from roots to shoots is a major 
hurdle in using plants and trees for phytoremediation (Pul-
ford et al. 2001; Shanker et al. 2003). Therefore, increasing 
Cr translocation by adding chemical and biological amend-
ments to soil has been exploited. It has been shown that 
reduction of chromate to chromic oxide by chemical or 
biological methods reduces the inertness and insolubility of 
chromic oxides in soil (James 1996). Organic acids (citric 
and oxalic) have been reported to play an important role by 
enhancing Cr uptake and increasing translocation to shoot 
(Chen et al. 1994; Davies et al. 2001). Nutrient culture stu-
dies revealed a marked enhancement in uptake and translo-
cation of chelated 51Cr in Phaseolous vulgaris. Cr chelated 
by diethylenetriamine pentaacetic acid (DTPA) was most 
effectively translocated followed by 51Cr-EDTA (ethylene-
diamine tetraacetic acid) and 51Cr-EDDHA (ethylenedi-
amine-N,N-bis(2-hydroxyphenylacetic acid) (Athalye et al. 
1995). Significant increases in Cr accumulation from 
Cr(III)-treated maize plants in the presence of increasing 
concentrations of organic acid have been observed (Srivas-
tava et al. 1999a, 1999b; Shahandeh and Hossner 2000). 
Source-to plant transfer coefficients of Cr tended to increase 
with increasing concentrations of organic acids in wheat. 
Chaney et al. (1997) observed that phytostabilization [in 
situ conversion of Cr(VI) in soil to Cr(III)] appears to have 
strong promise with respect to chromium. 

Majority of the research activities for mitigation of Cr 
toxicity have been focused on enhancing phytoaccumu-
lation of Cr in plants, and trees for phytoremediation use. 
Impaired mineral nutrition due to Cr toxicity has been cor-
rected by the application of mycorrhizal inoculation. It is 
reported that vesicular arbuscular mycorrhizal fungus 

(VAMF) Glomus mosseae enhances growth, yield and nut-
rient uptake and simultaneously decreased Cr content in the 
plant. In a study on the effects of Cr on the uptake and dis-
tribution of micronutrients (Fe, Mn, Cu and Zn) in mycor-
rhizal soybean and maize in sand culture, Davies et al. 
(2001) found that VAMF enhanced the ability of sunflower 
plants to tolerate Cr; and had a positive effect on tissue 
mineral concentration, growth and gas exchange in Cr-trea-
ted plants (Davies et al. 2002). It seems that the ameliora-
tive action of VAMF in Cr toxicity is due to avoidance of Cr 
uptake into the plant biomass, rather than hyperaccumula-
tion in the plant body. However, hyperaccumulation in plant 
biomass is pertinent for extraction of Cr from the soil or 
water ecosystem from the environmental to reduce Cr con-
centration and prevent further pollution. 

 
2. Alterations in translocation and partitioning 
 
Cr(VI) is actively taken up by a metabolic driven process as 
it competes with various essential elements such as iron or 
sulphur (Shanker et al. 2005) of similar electronic structure, 
whereas Cr(III) is probably passively taken up (Zayed and 
Terry 2003) and retained by cation exchange sites. Hence, it 
seems that Cr(VI) has an advantage at the entry level into 
the plant system, however, Cr(III) can also easily enter the 
system if it is organically complexed at the rhizosphere level. 
Generally oxidation of Cr(III) to Cr(VI) is a very slow pro-
cess at pH >5. Similarly, in soil with high organic and 
mineral content, anaerobic and reducing conditions oxida-
tion of Cr(III) to Cr(VI) is not favored (Zayed and Terry 
2003). Although, edible plants have capacity to accumulate 
high concentrations of Cr (up to 10 mg kg-1 biomass), the 
Cr concentration is lowest in fruits, increases in stem and 
highest in leaves (Zayed and Terry 2003) among the dif-
ferent plant tissues. It is reported that after absorption, 
Cr(III) to Cr(VI) is poorly translocated and largely retained 
in the roots, however, there is quantitative diference in this 
tendency among different plants (Zayed and Terry 2003). 
For effective phytoextraction, it is essential that the Cr ab-
sorbed and accumulated in the root tissue shoud be trans-
located to the harvestable plant parts. More research inputs 
are essential in this area to utilize the available Cr-hyperac-
cumulator plant species. 
 
Potential genes for phytoremediation 
 
Phytoremediation through metal accumulation in plant bio-
mass is a physiological process, and plants take up many 
toxic elements by default pathway along with essential ele-
ments. Extensive research have been made to understand 
the genetics and biochemical processes involved in metal 
uptake, transport and storage by hyperaccumulating plants 
(Baker et al. 2000; Karenlampi et al. 2000; Meagher et al. 
2000; Salt and Kramer 2000; Clemens et al. 2002; Pilon-
Smits and Pilon 2002; Pollard et al. 2002; Eapen and 
D’Souza 2005; Verbruggen et al. 2009) and a greater insight 
into the process of hyperaccumulation is essential for deve-
lopment of transgenic plants with improved phytoremedia-
tion capability. Physiological and classical genetic studies 
have been complemented by molecular studies, in particular 
transcriptome analysis. Presently, it is not easy to reconcile 
the results of the different research approaches applied. 
Each metal has specific molecular mechanism for uptake, 
transport and sequestration. Extensive progress has been 
made in identifying genes and proteins involved in Fe up-
take in plants (Eide et al. 1996; Guerinot 2001; Verbruggen 
et al. 2009). 

Hyperaccumulators are a good source of genes suitable 
for phytoremediation (Raskin and Ensley 2002; van de 
Mortel et al. 2006, 2008; Verbruggen et al. 2009). The regu-
latory control and use of tissue specific promoters offer 
great promise to develop plants for removal of elemental 
pollutants and radionuclides. Hyperaccumulators are loaded 
with acids and acid anions that have a function in metal sto-
rage or plant internal metal transport (Callahan et al. 2006, 
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2007; Verbruggen et al. 2009). Transgenic plants could be 
developed to secrete metal selective ligands into the rhizo-
sphere that could specifically solubilize elements for phyto-
remediation (Pilon-Smits and Pilon 2002). Finding simple 
molecules with selective chelation ability, which plants can 
make and secrete into the rhizosphere and simultaneously 
engineering plants with capability for transporting protein 
for the metal chelate could be an area for research and deve-
lopment. In Ni hyperaccumulator, free histidine in xylem 
exudates was found as a metal chelator (Krämer et al. 1996, 
2007). Histidine concentrations in the xylem exudates can 
be modified for increasing Ni accumulating capacity in 
plant. Other potential mediators of metal sequestration and 
accumulation include cation diffusion facilitation family 
(CDF) (Peiter et al. 2007). Cellular targeting, especially in 
the vacuoles, is important since the heavy metals can be 
kept in a safe compartment without disturbing the cellular 
functions. Hence, engineering vacuolar transporters, pref-
erably in specific cell types, is a second-generation approach 
for phytoremediation (Verbruggen et al. 2009). Another 
alternative is to create artificial metal sinks in the shoot by 
enhancing metal binding sites. Great strides have been 
made in the development of transgenic plants for phytore-
mediation, but majority of genes has been transferred from 
other organisms to plants (Rugh et al. 1996, 2000; Grichko 
et al. 2000; Lin et al. 2000; Pilon-Smits et al. 2000; Harada 
et al. 2001; Berken et al. 2002; Dhankher et al. 2002; Pilon-
Smits and Pilon 2002; Barceló and Poschenrieder 2003; 
Gisbert et al. 2003; Kawashima et al. 2004; Eapen and 
D’Souza 2005; Dhankher et al. 2006). Understanding 
hyperaccumulators will help in transfer of genes from 
hyperaccumulators to candidate plants. Building a library of 

well-characterized genes that function in mineral acquisi-
tion and storage will help in developing novel plants with 
improved hyperaccumulating traits. 

At least three different engineering approaches can be 
envisioned to enhance metal uptake, which include; (i) en-
hancing the number of uptake sites, (ii) alteration of speci-
ficity of uptake system to reduce competition by unwanted 
cations and (iii) increasing intracellular binding and seques-
tration (Clemens et al. 2002; Verbruggen et al. 2009). Dif-
ferent genes, which have been used for the development of 
transgenic plants and those having direct or indirect rele-
vance in enhancing metal accumulation, are summarized in 
Tables 2 and 3. These genes have potential roles in modu-
lating the physiological and biochemical processes of plants 
and could be prospective for development of transgenic 
hyperaccumlator plants. They mediate direct and indirect 
functions in metal acuumulation and tolerance and forth-
coming for genetic engineering to enhance metal tolerance 
in hyperaccumulator and nonhyperaccumulator plants, 
which could also bring out As and Cr tolerance for effective 
phytoremediation. 
 
CONCLUSION AND PROSPECTIVES 
 
It has been shown in multiple studies that plant trace ele-
ment metabolism are genetically regulated and can be mani-
pulated, leading to plants with altered metal tolerance, 
accumulation and/or capacity for biotransformation. When 
natural plant processes were accelerated by genetic engi-
neering, 2- to 3-fold increase in metal accumulation in plant 
was reported (Dhankher et al. 2002). This would potentially 
reduce the cost of phytoremediation to the same extent, if 

Table 2 Genes engineered in plants to induce metal tolerance. 
Genes and Annotation Gene 

source/origin 
Target plant 
species 

Response in transgenic 
plants 

Reference 

MT2 gene (metallothionein) Homo sapiens Nicotiana tabacum,
Brassica napus 

Cd tolerance Misra and Gedamu 
1989 

MT1 gene (metallothionein) Mus musculus Nicotiana tabacum Cd tolerance Pan et al. 1994 
GSH gene (glutathione synthetase) Oryza sativa B. juncea Cd tolerance Zhu et al. 1999a 
�-ECS gene (�-glutamylcysteine synthetase) E. coli B. juncea Cd tolerance Zhu et al. 1999b 
GR gene (glutathione reductase) Brassica juncea B. juncea Cd accumulator Pilon-Smits et al. 2000
CAX-2 gene (calcium vacuolar transporters) A. thaliana Nicotiana tabacum Cd, Ca and Mn accumulation Hirschi et al. 2000 
ACC deaminase gene (1-aminocyclopropane-1-
carboxylic acid) 

Enterobacter 
cloacae 

Lycopersicon 
esculentum 

Multiple metal (Cd, Co, Cu, 
Mg, Ni, Pb, or Zn) tolerance 

Grichko et al. 2000 

RCS1 gene (Rice cysteine synthase: CS, EC 4.2.99.8) Oryza sativa Nicotiana tabacum Cd tolerance Harada et al. 2001 
CUP-1 gene (yeast copper metallothionein) Saccharomyces 

cerevisiae 
Brassica oleracea,
Nicotiana tabacum

Cd accumulation, 
Cu accumulation 

Hasegawa et al. 1997;
Thomas et al. 2003 

Znt A gene [encodes a Pb(II)/Cd(II)/Zn(II) pump] E. coli Arabidopsis Cd and Pb resistance Lee et al. 2003 
YCF1 gene (yeast cadmium factor protein) Saccharomyces 

cerevisiae 
Arabidopsis Cd and Pb tolerance Song et al. 2003 

MTA gene (pea metallothionein) Pisum sativum Arabidopsis Cu accumulation Evans et al. 1992 
Ah MHX (vacuolar metal/proton exchanger) Arabidopsis Nicotiana tabacum Mg and Zn 

tolerance 
Shaul et al. 1999 

Nt CBP4 gene (plasma membrane calmodulin 
binding transporter protein) 

Nicotiana tabacum Nicotiana tabacum Ni tolerance and Pb 
accumulation 

Arazi et al. 1999 

GST gene (glutathione-S-transferase) Nicotiana tabacum Arabidopsis Al, Cu, Na tolerant Ezaki et al. 2000 
CS gene (citrate synthase) Pseudomonas 

aeruginosa 
Arabidopsis Al tolerance De la Fuente et al. 1997

parB gene (tobacco glutathione-S-transferase), 
NtPox (tobacco peroxidase), NtGDI1 (tobacco GDP 
dissociation Inhibitor) and AtBCB (Arabidopsis blue 
copper-binding protein) 

Nicotiana tabacum, 
Arabidopsis 

Arabidopsis Al tolerance Ezaki et al. 2001 

At MTPI gene (Zn transporters ZAT) Arabidopsis Arabidopsis Zn accumulation Van der Zaal et al. 1999 
APS1 gene (ATP sulfurylase) Arabidopsis Brassica juncea Se tolerance Pilon-Smits et al. 1999;

Van Huysen et al. 2004
SL gene (selenocysteine lyase) Mus musculus Arabidopsis Se tolerance 

and accumulation 
Pilon et al. 2003 

SMT gene (selenocysteine methyl transferase) Astragalus 
bisulcatus 

A. thaliana Se resistance Ellis et al. 2004 

CGS gene (cystathionine-gamma synthase) Arabidopsis Brassica juncea Se volatilization Van Huysen et al. 2004
PCS gene (phytochelatin synthase) Triticum aestivum, 

Arabidopsis 
Nicotiana glauca, 
Arabidopsis 

Pb accumulation, 
As and tolerance enhnaced 

Gisbert et al. 2003; 
Li et al. 2004 
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Table 3 Genes over expressing in metal tolerant plants; upcoming for genetic engineering to enhance metal tolerance in other plants with direct/indirect 
roles in enhancing As and Cr tolerance and accumulation. 
Gene name Gene action/related 

function 
Plant species Phenotypic response / 

related function in the 
plant species 

Reference 

Genes encoding metal uptake into cells, vacuolar sequestration, remobilization from the vacuole, xylem loading/unloading of metal/metal ligand 
complexes, proton pumps, antiports and ion transporters 

ZIP4, ZIP6, ZIP7, 
ZIP9, ZIP10, IRT1, 
IRT3 

ZIP family of metal 
transporters 

Arabidopsis and/or 
Thalaspi 

Metal uptake into cells Becher et al. 2004; Weber et al. 2004;
Filatov et al. 2006; Hammond et al. 
2006; Talke et al. 2006; van de 
Mortel et al. 2006 

MTP1, MTP8, 
MTP11 

Cation diffusion facilitator Arabidopsis and/or 
Thalaspi 

Metal vacuolar sequestration Becher et al. 2004; Weber et al. 2004; 
Hammond et al. 2006; Talke et al. 
2006; van de Mortel et al. 2006 

CAX2 Ca+2 cation antiporter Arabidopsis and/or 
Thalaspi 

Metal vacuolar sequestration Hammond et al. 2006 

AtHMA3 P-type metal ATPase Arabidopsis and/or 
Thalaspi 

Metal vacuolar sequestration van de Mortel et al. 2006 

NRAMP1, NRAMP, 
NRAMP5 

Natural resistance associated 
macrophage 

Arabidopsis and/or 
Thalaspi 

Metal remobilization from 
the vacuole 

Webber et al. 2004; Filatov et al. 
2006; Hammond et al. 2006; Talke et 
al. 2006; van de Mortel et al. 2006 

HMA4 P-type metal ATPase Arabidopsis and/or 
Thalaspi 

Metal remobilization from 
the vacuole 

Becher et al. 2004; Hammond et al. 
2006; van de Mortel et al. 2006 

FRD3 Multidrug and toxin efflux 
family transporter 

Arabidopsis and/or 
Thalaspi 

Xylem loading/unloading of 
metal/metal ligand 
complexes 

Hammond et al. 2006; Talke et al. 
2006; van de Mortel et al. 2006, 2008

YSL3, YSL6, YSL7 Yellow-stripe-like transporter Arabidopsis and/or 
Thalaspi 

Xylem loading/unloading of 
metal/metal ligand 
complexes 

Talke et al. 2006; Gendre et al. 2007

AtNHX 
 
AtNHX2, AtNHX5, 
AtNHX1 

Vacuolar Na+/H+ antiporter 
Vacuolar Na+ 
compartmentation 

Lycopersicon esculentum
Brassica napus 
Arabidopsis 

Salt tolerance, growth 
 
Salt tolerance 

Apse et al. 1999; Zhang et al. 2001 
 
Yokoi et al. 2002 

HKT1 Potassium transporter Triticum aestivum Salt tolerance in growth and 
improved K+/Na+ ratio 

Laurie et al. 2002 

Genes encoding synthesis of metal ligands 
NAS, NAS2, NAS3, 
NAS4 

Nicotinamine synthetase Arabidopsis and/or 
Thalaspi 

Synthesis of metal lignads Becher et al. 2004; Hammond et al. 
2006; Talke et al. 2006; van de 
Mortel et al. 2006, 2008 

SAMS1, SAMS2, 
SAMS3 

S-adenosyl-methionine 
synthetase 

Arabidopsis and/or 
Thalaspi 

Synthesis of metal lignads Talke et al. 2006 

ASOA2 Cysteine synthase Arabidopsis and/or 
Thalaspi 

Synthesis of metal lignads Webber et al. 2004; Talke et al. 2006

Genes related to oxidative stress protection and ion homeostasis 
Apx3 Ascorbate peroxidase Nicotiana tabacum Increased protection against 

oxidative stress 
Wang et al. 1999 

GST/GPX Glutathione-S-transferase 
with Glutathione peroxidase 

Nicotiana tabacum Increased stress tolerance Roxas et al. 2000 

MsFer Ferritin (iron storage) Nicotiana tabacum Increased tolerance to 
oxidative damage caused by 
excess iron 

Deak et al. 1999 

parB Glutathione-S-transferase Arabidopsis Protect against Al toxicity 
and oxidative stress 

Ezaki et al. 2000, 2001 

NtPox Gluthathione peroxidase Arabidopsis Protect against Al toxicity 
and oxidative stress 

Ezaki et al. 2001 

SOD Mn superoxide dismutase Nicotiana tabacum Reduced cellular damage 
under oxidative stress 

Bowler et al. 1991 

SOD Mn superoxide dismutase Nicotiana tabacum Increased tolerance to Mn 
deficiency 

Yu et al. 1999 

SOD Mn superoxide dismutase Brassica napus Increased aluminum 
tolerance 

Basu et al. 2001 

BiP Endoplasmic reticulum 
binding protein (BiP) 

Nicotiana tabacum Maintenance of plant water 
status under drought stress 
and antioxidative defence 

Alvim et al. 2001 

IRT1 Divalent cation transporter Arabidopsis Iron uptake by root and 
elimination of iron 
deficiency 

Vert et al. 2002 

SOS4 Involved in the synthesis of 
pyridoxal-5-phosphate which 
modulates ion transporters 

Arabidopsis Salt tolerance through 
Na+/K+ homeostasis 

Shi et al. 2002 

PDI1, PDI2 Protein disulfide isomerase 
1, Protein disulfide 
isomerase 2 

Arabidopsis and/or 
Thalaspi 

Stress protection response Talke et al. 2006 

At1g45145 H-type thioredoxin Arabidopsis / Thalaspi Stress protection response Filatov et al. 2006 
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Table 3 (Cont.) Genes over expressing in metal tolerant plants; upcoming for genetic engineering to enhance metal tolerance in other plants with direct/indirect roles 
in enhancing As and Cr tolerance and accumulation. 
Gene name Gene action/related function Plant species Phenotypic response / related 

function in the plant species 
Reference 

Genes encoding metal uptake into cells, vacuolar sequestration, remobilization from the vacuole, xylem loading/unloading of metal/metal ligand complexes,
proton pumps, antiports and ion transporters 

ZIP4, ZIP6, ZIP7, 
ZIP9, ZIP10, 
IRT1, IRT3 

ZIP family of metal transportes Arabidopsis and/or Thalaspi Metal uptake into cells Becher et al. 2004; Weber et al. 2004; 
Filatov et al. 2006; Hammond et al. 
2006; Talke et al. 2006; van de Mortel 
et al. 2006 

MTP1, MTP8, 
MTP11 

Cation diffusion facilitator Arabidopsis and/or Thalaspi Metal vacuolar sequestration Becher et al. 2004; Weber et al. 2004; 
Hammond et al. 2006; Talke et al. 2006;
van de Mortel et al. 2006 

CAX2 Ca+2 cation antiporter Arabidopsis and/or Thalaspi Metal vacuolar sequestration Hammond et al. 2006 
AtHMA3 P-type metal ATPase Arabidopsis and/or Thalaspi Metal vacuolar sequestration van de Mortel et al. 2006 
NRAMP1, 
NRAMP, NRAMP5 

Natural resistence associated 
macrophage 

Arabidopsis and/or Thalaspi Metal remobilization from the 
vacuole 

Webber et al. 2004; Filatov et al. 2006; 
Hammond et al. 2006; Talke et al. 2006; 
van de Mortel et al. 2006 

HMA4 P-type metal ATPase Arabidopsis and/or Thalaspi Metal remobilization from the 
vacuole 

Becher et al. 2004; Hammond et al. 
2006; van de Mortel et al. 2006 

FRD3 Multidrug and toxin efflux 
family transporter 

Arabidopsis and/or Thalaspi Xylem loading/unloading of 
metal/metal ligand complexes 

Hammond et al. 2006; Talke et al. 2006;
van de Mortel et al. 2006, 2008 

YSL3, YSL6, YSL7 Yello-stripe-like transporter Arabidopsis and/or Thalaspi Xylem loading/unloading of 
metal/metal ligand complexes 

Talke et al. 2006; Gendre et al. 2007 

AtNHX 
 
AtNHX2, AtNHX5, 
AtNHX1, 

Vacuolar Na+/H+ antiporter 
Vacuolar Na+ compartmentation 

Lycopersicon esculentum 
Brassica napus 
Arabidopsis 

Salt tolerance, growth 
 
Salt tolerance 

Apse et al. 1999; Zhang et al. 2001 
 
Yokoi et al. 2002 

HKT1 Potassium transporter Triticum aestivum Salt tolerance in growth and 
improved K+/Na+ ratio 

Laurie et al. 2002 

Genes encoding synthesis of metal ligands 
NAS, NAS2, NAS3, 
NAS4 

Nicotinamine synthetase Arabidopsis and/or Thalaspi Synthesis of metal lignads Becher et al. 2004; Hammond et al. 
2006; Talke et al. 2006; van de Mortel 
et al. 2006, 2008 

SAMS1, SAMS2, 
SAMS3 

S-adenosyl-methionine 
synthetase 

Arabidopsis and/or Thalaspi Synthesis of metal lignads Talke et al. 2006 

ASOA2 Cysteine synthase Arabidopsis and/or Thalaspi Synthesis of metal lignads Webber et al. 2004; Talke et al. 2006 
Genes related to oxidative stress protection and ion homeostasis 

Apx3 Ascorbate peroxidase Nicotiana tabacum Increased protection against 
oxidative stress 

Wang et al. 1999 

GST/GPX Glutathione-S-transferase with 
Glutathione peroxidase 

Nicotiana tabacum Increased stress tolerance Roxas et al. 2000 

MsFer Ferritin (iron storage) Nicotiana tabacum Increased tolerance to 
oxidative damage caused by 
excess iron 

Deak et al. 1999 

parB Glutathione-S-transferase Arabidopsis Protect against Al toxicity and 
oxidative stress 

Ezaki et al. 2000, 2001 

NtPox Gluthathione peroxidase Arabidopsis Protect against Al toxicity and 
oxidative stress 

Ezaki et al. 2001 

SOD Mn superoxide dismutase Nicotiana tabacum Reduced cellular damage 
under oxidative stress 

Bowler et al. 1991 

SOD Mn superoxide dismutase Nicotiana tabacum Increased tolerance to Mn 
deficiency 

Yu et al. 1999 

SOD Mn superoxide dismutase Brassica napus Increased aluminum tolerance Basu et al. 2001 
BiP Endoplasmic reticulum binding 

protein (BiP) 
Nicotiana tabacum Maintenance of plant water 

status under drought stress and 
antioxidative defence 

Alvim et al. 2001 

IRT1 Divalent cation transporter Arabidopsis Iron uptake by root and 
elimination of iron deficiency

Vert et al. 2002 

SOS4 Involved in the synthesis of 
pyridoxal-5-phosphate which 
modulates ion transporters 

Arabidopsis Salt tolerance through Na+/K+ 
homeostasis 

Shi et al. 2002 

PDI1, PDI2 Protein disulfide isomerase 1, 
Protein disulfide isomerase 2 

Arabidopsis and/or Thalaspi Stress protection response Talke et al. 2006 

At1g45145 H-type thioredoxin Arabidopsis / Thalaspi Stress protection response Filatov et al. 2006 
FER1, FER2 Ferritin Fe(III) binding Arabidopsis / Thalaspi Role in iron homeostasis Talke et al. 2006; van de Mortel et al. 

2006 
IREG2 Iron regulated transporter 2 Arabidopsis / Thalaspi Role in iron homeostasis Talke et al. 2006; van de Mortel et al. 

2006 
At4g35830 Cytoplasmic aconitase Arabidopsis / Thalaspi Role in iron homeostasis Filatov et al. 2006 
PHT1-4 Phosphate:H1 symporter 

family 
Arabidopsis / Thalaspi Homeostasis of 

macronutrients 
Becher et al. 2004; Hammond et al. 
2006; Talke et al. 2006 
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the same results hold true in the field. Furthermore, the 
introduction of a new pathway has led to plants that can 
detoxify (in case of Hg, As and Se) in ways that other plants 
cannot, this is potentially valuable. 

As more metal-related genes are discovered, facilitated 
by genome sequencing, many new possibilities are opening 
up for the creation of new transgenics with favorable pro-
perties for phytoremediation. Physiological studies in case 
of Zn in T. caerulescens system have revealed considerable 
diversity among populations with regard to the capacities 
and the specific metal-affinity patterns, although there could 
also be a basic system which is common to all the popula-
tions (Assunção et al. 2008). This system is possibly driven 
by ZNT1 and ZNT2 (the AtZIP4 and AtIRT3 homologs, 
respectively), which are highly expressed in all T. caeru-
lescens populations investigated so far. Microarray analyses 
have advanced the knowledge of hyperaccumulation by 
providing promising candidate genes. The phenomenon of 
constitutive over expression of a large array of genes seems 
to be a common process in the adaptation of plants to ex-
treme environments (Chakrabarti et al. 2009). There is a 
remarkably convergent core set of genes encoding members 
of the ZIP, CDF, HMA and NRAMP transporter families, as 
well as FRD3 and NAS genes overexpressed in Zn hyper-
accumulators studied so far. The identification of those 
genes enables transgenic strategies to engineer plants with 
higher tolerance capacities or modified accumulation of 
trace metals. Those transgenic plants could be designed for 
phytoremediation of other metals. 

In addition to constitutive overexpression of one gene, 
several genes may be overexpressed simultaneously, and the 
overexpression may be fine-tuned in specific tissues, under 
specific conditions, or in specific cellular compartments. 
The promising strategies are summarized. (1) The many 
newly discovered metal transporters, including the ones 
from hyperaccumulator plants [ZNT1, (TgMTP1: T. goesin-
gense CDF members)] may be overexpressed in high bio-
mass plant species, targeted to different tissues and intracel-
lular locations (Verbruggen et al. 2009). (2) Nicotianamine 
overproduction may be an avenue to manipulate metal 
translocation and tolerance, with special reference to iron 
uptake, NA being the precursor of phytosiderophores 
(Higuchi et al. 1999). Overproduction of NA is feasible via 
overexpression of enzymes from the NA biosynthesis path-
way, for which genes have been cloned (Herbik et al. 1999; 
Takahashi et al. 1999; Mari et al. 2006; van de Mortel et al. 
2006). (3) Overexpression of phytochelatin synthase (PCS) 
mediating PC synthesis from GSH may further enhance 
metal tolerance and accumulation. The overexpression of 
PCS is possible, because genes encoding PCS have been 
cloned (Clemens et al. 1999; Ha et al. 1999; Vatamaniuk et 
al. 1999; Li et al. 2004; Dong et al. 2005). The overexpres-
sion of the vacuolar transporter responsible for shuttling the 
PC-metal complex into the vacuole also enhanced metal 
tolerance and accumulation (Dhankher et al. 2002; Li et al. 
2006). (4) Overproduction of histidine can be achieved and 
the genes involved in His biosynthesis have been cloned 
(Persans et al. 1999). The histidine-overproducing plants 
have enhanced Ni tolerance (Krämer and Chardonnens 
2001; Ingle et al. 2005; Krämer et al. 2007). (5) Another 
research area that may render a wealth of new information 
in the coming years is molecular biology of the rhizosphere. 
Manipulation of the quality and quantity of root-released 
compounds (Gleba 1999; Dushenkov et al. 2002) offer a 
promising alternative strategy to affect metal uptake or ex-
clusion. Together, these new developments will likely give 
rise to much new information about metal metabolism in 
plants in the near future and may lead to the fruitful ap-
plications in environmental cleanup. 
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