Chemical Looping Combustion of Rice Husk

Rashmeet Singh Monga¹, Ganesh R. Kale², Sadanand Y. Guhe¹
¹(Chemical Engineering Dept., Jawaharlal Nehru Engineering College, Aurangabad, India)
²(Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India)

ABSTRACT
A thermodynamic investigation of direct chemical looping combustion (CLC) of rice husk is presented in this paper. Both steam and CO₂ are used for gasification within the temperature range of 500–1200°C and different amounts of oxygen carriers. Chemical equilibrium model was considered for the CLC fuel reactor. The trends in product compositions of the fuel reactor, were determined. Rice husk gasification using 3 moles H₂O and 0 moles CO₂ per mole carbon (in rice husk) at 1 bar pressure and 900°C was found to be the best operating point for hundred percent carbon conversion in the fuel reactor. Such detailed thermodynamic studies can be useful to design chemical looping combustion processes using different fuels.

Key Words- Chemical looping combustion, NiO, Rice husk, Thermodynamic study.

I. Introduction
CO₂ emission to the environment is mainly contributed by industrial power generation. Concerns for climate change phenomenon have started special procedures to reduce CO₂ emissions using CO₂ capture and storage techniques that capture CO₂ from energy-intensive processes and then store it in suitable geologic locations [1]. The concerns of increase in greenhouse gas emissions and an inevitable global warming crisis is reported by researchers. CO₂ is also largely generated by fossil fuel processing and it is a crucial greenhouse gas that affects the climate change [2]. Fossil fuels are at present the major energy resources and are likely to dominate for more several decades. Hence it is essential to continue the use of fossil fuels but also reduce the CO₂ emissions to the atmosphere [3]. The expectations from the Carbon capture and storage (CCS) technologies to help curb the greenhouse gas emissions and ensure a sustainable development of power generation and other energy-intensive industrial sectors are extremely high. Amongst them, chemical looping systems display a promising option to capture CO₂ with lower cost and energy penalty [1]. Chemical looping combustion (CLC) is a promising technology to utilize fossil fuel for combustion and prevent CO₂ dilution in the nitrogen rich flue gases. In this process, a solid oxygen carrier supplies the oxygen needed for CO₂ and water formation that is a nitrogen free product mixture. This avoids the major cost of CO₂ separation from the flue gases and also reduces the NOx formation. A good oxygen carrier readily reacts with the fuel gas and shall be reoxidized upon being contacted with oxygen. An oxygen carrier is generally prepared by a metal oxide and an inert binder that provide the oxygen storage, fluidizability and mechanical strength [4]. Chemical looping combustion (CLC) is a non-flame two-step combustion which produces a pure CO₂ stream for easy compression and sequestration. The process comprises of two interconnected fluidized bed reactors where the fuel reactor is a bubbling fluidized bed and the air reactor is a conventional circulating fluidized bed. It uses an oxygen carrier - a highly-reactive metal particle, to avoid the direct contact of air and fuel during the combustion, to indirectly transport oxygen from the air to the fuel. The products of combustion are kept separated from the rest of the flue gases namely nitrogen and excess oxygen [5]. The CLC system is composed of two reactors, an air and a fuel reactor, as shown in fig. 1.
In CLC, the solid oxygen carrier is circulated between the air and fuel reactors. The fuel is fed into the fuel reactor where it is oxidized by the lattice oxygen of the oxygen carriers and the reaction in the fuel reactor is almost endothermic.

\[(2n + m) \text{Me}_x\text{O}_y + \text{CH}_2\text{H}_2\text{m} \rightarrow (2n + m) \text{Me}_x\text{O}_{y-1} + n\text{H}_2\text{O} + n\text{CO}_2.\]

Once fuel oxidation is completed; the reduced metal oxide \(\text{Me}_x\text{O}_{y-1} \) is transported to the air reactor where it is reoxidized according the reaction:

\[\text{Me}_x\text{O}_{y-1} + \frac{1}{2}\text{O}_2 \rightarrow \text{Me}_x\text{O}_y\]

The flue gas stream from the air reactor will have a high temperature and contain \(\text{N}_2 \) and some unreacted \(\text{O}_2 \).

Transition metal oxides, such as Ni, Fe, Cu, and Mn oxides are reported as reactive oxygen carriers. Ni-based oxygen carriers have exhibited the best reactivity and stability during multi-redox cycles [6]. Henrik Lejon et al. has investigated the feasibility of using three different solid fuels in chemical-looping combustion (CLC) using NiO as oxygen carrier in a laboratory fluidized-bed reactor system at 970°C. They reported that the NiO particles also showed good reactivity with methane and a syngas mixture of 50% \(\text{H}_2 \) and 50% \(\text{CO} \) also showed good fluidizing properties without any signs of agglomeration [7]. Tobias Mattisson et al. have investigated the feasibility of using NiO as an oxygen carrier with \(\text{CH}_4 \) as fuel and in the temperature range 700–1200°C during chemical-looping combustion and their result showed that the yield of \(\text{CO}_2 \) and \(\text{H}_2\text{O} \) decreased with increase in temperature [8]. M.M. Yazdanpanah et al. has presented a reactor model for combustion of \(\text{CH}_4 \) with \(\text{NiO}/\text{NiAl}_2\text{O}_4 \) oxygen carriers in the fuel reactor of a 10 kW CLC pilot plant. The model shows good agreement with experimental results considering some kinetic and hydrodynamic modifications, including impact of gas adsorption by falling particles in the bubble phase on the gas exchange coefficient and thermodynamic limitation of \(\text{CO} \) and \(\text{H}_2 \) combustion [9]. C. Saha et al. have carried out an experimental investigation pertaining to CLC of a Victorian brown coal using \(\text{NiO} \) and \(\text{CuO} \) as oxygen carriers at 950 °C (NiO) and 800°C (CuO) and have reported the high reactivity of CuO as compared to NiO during cyclic operation [10]. Magnus Rydén et al. have examined the Ce, Ca, or Mg stabilized \(\text{ZrO}_2 \) oxygen carriers by redox experiments in a batch fluidized-bed reactor at 800–950°C, using \(\text{CH}_4 \) as fuel. The experiments showed good reactivity between the particles and \(\text{CH}_4 \) [11].

Many studies have also demonstrated the feasibility of using CLC for both gaseous and solid fuels [12]. The chemical looping process was mainly targeted towards efficient carbon capturing [13, 14] and hydrogen production [15, 16]. Rutuja Bhoje et al. have done theoretical study of chemical looping combustion of methane to consider some key technology development points to help the process engineer choose the right oxygen carrier and process conditions [17]. X. Wang et al. have developed a three-dimensional numerical model to simulate the CLC process in the fuel reactor using a bubbling fluidized bed of oxygen carrier made from 14 wt% of metal oxide CuO and 86% wt of inert material \(\text{Al}_2\text{O}_3 \) and a coal gas from coal gasification containing 55 vol. % \(\text{CO} \), 30 vol. % \(\text{H}_2 \) and 15 vol. % \(\text{CO}_2 \) [18].

India produces approximately 120 million tons of paddies each year which gives around 24 million tons of rice husk and 4.4 million tons of rice husk ash every year. Rice husk is a high calorific value renewable fuel and can be used for electricity generation in efficient manner [19]. Rice husk can be used as fuel and has oxygen in its structure [20]. The CLC of rice husk has not been studied so far in literature.

II. Process Design:

The conceptual process design for CLC of rice husk is shown in figure 2. The process scheme consists of a CLC fuel reactor and air reactor. Preheated rice husk, \(\text{CO}_2 \), \(\text{H}_2\text{O} \) and \(\text{NiO} \) from air reactor are fed to the fuel reactor in calculated amount to convert the rice husk to \(\text{CO}_2 \) and \(\text{H}_2\text{O} \). The fuel reactor products were assumed to be in thermodynamic equilibrium at the exit of the reactor. Complete conversion of rice husk and maximum \(\text{CO}_2 \) production are targeted in the fuel reactor. It is assumed that the NiO oxidizes the carbon and hydrogen in rice husk to \(\text{CO}_2 \) and \(\text{H}_2\text{O} \) in the CLC fuel reactor. The moles of OC (NiO) for fuel reactor are varied depending on the stoichiometric requirement of reaction between rice husk and NiO. Complete conversion of rice husk to \(\text{CO}_2 \) and \(\text{H}_2\text{O} \) is desired; however the conversion is limited by thermodynamic equilibrium.

![Fig. 2- Process diagram](image-url)
The OC (NiO) is reduced to Ni in the CLC fuel reactor. The products of the CLC fuel reactor go through a gas-solid separator and the gaseous products, mainly containing CO and H₂O, can be cooled for CO₂ separation and steam generation with heat recovery or recycled back as required. The solid products of the CLC fuel reactor containing OC are transferred to the air reactor, in which preheated air is added to completely oxidize coke to CO₂ and regenerate the reduced OC. Complete conversion is assumed in these oxidation reactions.

The regenerated oxygen carrier (NiO) is separated from the air reactor product stream using a gas-solid separator and is recycled to the fuel reactor. The air reactor is the major source of thermal energy in this process. It is safely assumed that both the air and fuel reactors operate at the same temperature and pressure conditions.

Table 1: Rice husk composition [21].

<table>
<thead>
<tr>
<th>Species</th>
<th>C</th>
<th>H₂</th>
<th>O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moles</td>
<td>1</td>
<td>0.6402</td>
<td>0.3052</td>
</tr>
</tbody>
</table>

The base composition of rice husk taken was 1 mole C, 0.6402 moles hydrogen (H₂), 0.3052 oxygen (O₂). According to rice husk composition reaction involved in fuel reactor assumed to be

\[\text{C} + 0.6402 \text{H}_2(g) + 0.3052 \text{O}_2(g) + 2.0298\text{NiO} = \text{CO}_2(g) + 0.6402\text{H}_2\text{O}(g) + 2.0298\text{Ni} \quad (1) \]

III. Process Methodology:

Thermodynamic analysis of the system helps us to determine the optimum conditions that can maximize the yield with low energy consumption [22]. HSC Chemistry software version 5.11 is used to generate the thermodynamic equilibrium data for CLC fuel reactor in this process study. The thermodynamic equilibrium calculations in the Gibbs routine of HSC Chemistry are done using the Gibbs free energy minimization algorithm. The Gibbs program searches the best combination of most stable species in which the Gibbs free energy of the system can achieve its minimum at a fixed mass balance (a constraint minimization problem), constant pressure, and temperature. Hence no chemical reaction equations are required in the input.

The chemical species such as C(s), CO₂(g), H₂(g), CO(g), H₂O(g), CH₄(g), H₂O(l), O₂(g), NiO(s) and Ni(s), that are usually found in CLC reaction system considered in this study. The input species fed to the fuel reactor were rice husk with oxygen carrier, H₂O(g), and CO₂(g). The material balances are done by Equilibrium Composition module of HSC Chemistry and the results were used to calculate reaction enthalpy by Reaction Equation module of HSC Chemistry software.

Table 2: Fuel reactor feed condition with NiO in stoichiometric ratio.

| Feed condition | Input moles of Rice husk | Input moles of CO₂ | Input moles of H₂O | GaCR | Input moles of NiO (For 1 mol carbon ratio (GaCR) ranging from 1 to 3 was used in this study. The CLC of rice husk using both gasifying agent (CO₂ and H₂O) and oxygen carrier (NiO) is studied with intermediate steps of increase in CO₂ moles (with simultaneous decrease in steam moles) for constant GaCR ratios. These feed conditions for CO₂ and steam input per mole carbon (in rice husk) are shown in Table 2. These inputs were used to calculate the thermodynamic equilibrium composition in the CLC fuel reactor. The oxidation reaction in the air reactor is exothermic. It is presumed that, according to stoichiometric amount given by the reactions the air is supplied to the air reactor:

\[
\text{Ni} + 0.5\text{O}_2 = \text{NiO} \\
\text{C} + \text{O}_2 = \text{CO}_2
\]

IV. Results and Discussions:

4.1. Effect of Amount of oxygen carrier:

The stoichiometric quantity of NiO was varied according to fuel reactor reaction of oxygen carrier:

\[
\text{C} + 0.6402\text{H}_2(g) + 0.3052 \text{O}_2(g) + 2.0298 \text{NiO} = \text{CO}_2(g) + 0.6402\text{H}_2\text{O}(g) + 2.0298 \text{Ni}
\]

Stoichiometric amount of NiO reqd. (S) = 2.0298

Assuming S = 2.0298
The effect of stoichiometric amount of oxygen carrier on CLC of rice husk was investigated for 1, 1.25, and 1.5 stoichiometric of NiO in fuel reactor. Some side reactions also take place in the fuel reactor and hence the conversions in the fuel reactor are limited by thermodynamic equilibrium constraints. It was necessary to study the equilibrium product composition of the CLC fuel reactor at 1 bar pressure. Since, the OC is generally used in excess of the stoichiometric requirement in CLC processes to enhance the syngas and CH₄ conversion in the fuel reactor. Hence two more cases (1.25S and 1.5S) using higher amounts (1.25 times and 1.5 times the stoichiometric requirement) of OC were also studied.

4.1.1. (CH₄ + CO + H₂) formation:

The (CH₄ + CO + H₂) compositions in product gases at 1 bar pressure and at 700°C of the CLC fuel reactor for different inputs of OC and different input feed conditions are shown in Figure 3. It was observed that the H₂, CO, and CH₄ emissions from the fuel reactor decreased with increase in the amount of OC. At constant GaCR, it was also observed that the (CH₄ + CO + H₂) moles generally decreased with increase in feed CO₂ moles (with simultaneous decrease in H₂O moles). The maximum amount of (CH₄ + CO + H₂) exit moles were found to be 0.19 moles for case CS1, while the minimum quantity of (CH₄ + CO + H₂) exit moles were observed to be 0.02 moles (AS1).

4.1.2. CO₂ Emission:

The CO₂ emissions at 1 bar pressure and 700°C of the CLC fuel reactor for different inputs of OC and different input feed conditions is shown in Fig. 4. It was seen that the CO₂ emission from the fuel reactor increase with increase in the amount of OC. It was also observed that the product CO₂ moles generally decrease with increase in feed CO₂ moles at constant GaCR. The maximum amount of CO₂ emission was found to be 0.99 moles for case AS1, while the minimum CO₂ emission was observed to be 0.87 moles (CS4).

4.1.3. Syngas ratio:

The syngas ratio at 1 bar pressure and at 700°C of the CLC fuel reactor for different inputs of OC and different input feed conditions is shown in Fig. 5. It was observed that the syngas ratio remains constant irrespective of increase in the amount of OC. It was also observed that the syngas ratio generally decreased with increase in feed CO₂ moles at constant GaCR. The maximum syngas ratio was found to be 5.73 (CS1), while the minimum of syngas ratio was observed to be 0.25 (CS4). This constant syngas ratio observation is reported for the first time in this paper.

4.2 Effect of GaCR Conditions and Temperature.

4.2.1. Net CO₂ emission:

The Net CO₂ emissions from the CLC process is used to measure the CO₂ utilization and is shown in Fig. 6. The net CO₂ emission (moles) = CO₂ moles (in output) - CO₂ moles (in input). An increase in
temperature from 500 to 1200°C resulted in decrease in net CO$_2$ emission. At constant GaCR, increasing the CO$_2$ moles in the input (with simultaneous decrease in H$_2$O moles) decreased the net CO$_2$ emission in output. The net maximum CO$_2$ emission found in case CS1 (3 moles H$_2$O + 0 moles CO$_2$).

4.2.2 H$_2$ and CO formation:

The H$_2$ formation increased with increase in temperature from 500 to 1200°C. Increase in the CO$_2$ moles (with simultaneous decrease in H$_2$O moles) in GaCR ratio decreased the H$_2$ formation in output. The maximum H$_2$ formation was found in case AS1 (3 moles H$_2$O + 0 moles CO$_2$) fig. 7a. Similarly, increase in the process temperature led to an increase in CO formation. Increase in the CO$_2$ in GaCR ratio increased the CO formation in output. The minimum CO formation found in case AS1 (3 moles H$_2$O + 0 moles CO$_2$) as shown in fig. 7b.

4.2.3. Syngas Yield:

The syngas yield is calculated by adding the H$_2$ and CO moles obtained from the process. As seen in Fig. 8, the syngas yield generally increased with increase in temperature from 500 to 1200°C and for constant GaCR. Increase in the feed CO$_2$ moles led to a decrease in syngas yield, e.g. the syngas yield increased from 0.09 to 0.24 moles for case AS1, and the syngas yield increased from 0.06 to 0.37 moles for case AS4 and 0.06 to 0.33 for BS5.

4.2.4. NiO conversion:

It is assumed that the CH$_4$, CO, and H$_2$ are oxidized to CO$_2$ and H$_2$O by means of NiO in the CLC fuel reactor. The oxygen carrier (NiO) gets reduced in the CLC fuel reactor. The NiO conversion slightly decreased with increase in temperature from 500-1200°C. For e.g. the NiO conversion decreased from 93.75% to 88.23% in case of AS1 while it decreased from 93.21% to 81.57% in case of CS4 as shown in fig. 9.

The carbon conversion at 1 bar pressure is shown in Table 2. It was seen that as the temperature increased from 500–1200°C, the carbon conversion reached its maximum (100%). It was observed that
the 100% carbon conversion was achieved at relatively low temperature for higher GaCR.

4.2.5. 100% carbon conversion in fuel reactor:

It is very important for the CLC process to get 100% carbon conversion in the fuel reactor as the unreacted carbon can go to in air reactor and form CO₂. The lowest temperature for 100% carbon conversion was found to be 900˚C in case CS1, so this point was found to be the best point for process operation.

Table 2- Carbon Conversion

<table>
<thead>
<tr>
<th>%Carb</th>
<th>50</th>
<th>75</th>
<th>100</th>
<th>125</th>
<th>150</th>
<th>175</th>
<th>200</th>
<th>225</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>a0</td>
<td>0.38</td>
<td>0.72</td>
<td>0.75</td>
<td>0.76</td>
<td>0.76</td>
<td>0.77</td>
<td>0.76</td>
<td>0.75</td>
<td>0.74</td>
</tr>
<tr>
<td>a1</td>
<td>0.12</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>a2</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>a3</td>
<td>0.65</td>
<td>0.65</td>
<td>0.64</td>
<td>0.63</td>
<td>0.63</td>
<td>0.62</td>
<td>0.62</td>
<td>0.61</td>
<td>0.60</td>
</tr>
<tr>
<td>b1</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>b2</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>b3</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>b4</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>b5</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>c1</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
</tr>
<tr>
<td>c2</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>c3</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
</tr>
<tr>
<td>c4</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
</tr>
</tbody>
</table>

V. Conclusion

This theoretical study was done to understand the material balances for process design of direct CLC of rice husk. The study considered the effect of temperature and effect of amount of oxygen carrier in the fuel reactor using steam and CO₂ as gasifying agents in steps. It was concluded that rice husk CLC using 3 moles H₂O and 0 moles CO₂ per mole carbon at 1 bar pressure and 900˚C is the best point to operate the process as hundred percent carbon conversion in the rice husk occurs in the process. The results obtained in this detailed study can be used for scale up of the process. Further Experimentation is required for the commercialization of the technology.

References

